PB

Cho tứ diện OABC có ba cạnh OA, OB và OC đôi một vuông góc. Gọi H là chân đường vuông góc hạ từ O tới mặt phẳng (ABC). Chứng minh rằng

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

CT
5 tháng 7 2018 lúc 17:41

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có:

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Do H là chân đường vuông góc hạ từ O tới mặt phẳng (ABC) nên:

OH ⊥ (ABC) ⇒ OH ⊥ BC (2)

Mà OA; OH ⊂ (OAH); OA ∩ OH = O (3)

Từ (1); (2) và (3) ⇒ BC ⊥ (OAH)

⇒ BC ⊥ AH

Chứng minh tương tự ta có: AC ⊥ BH

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

⇒ H là trực tâm ΔABC.

b) Gọi M = AH ∩ BC.

+ BC ⊥ (OAH) ⇒ BC ⊥ OM.

ΔOBC vuông tại O có đường cao OM

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

+ OA ⊥ (OBC) ⇒ OA ⊥ OM ⇒ ΔOAM vuông tại O.

OH ⊥ (ABC) ⇒ OH ⊥ AM.

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Bình luận (0)

Các câu hỏi tương tự
QT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết