Bài 1: Vectơ trong không gian

H24

Cho tứ diện đều ABCD. Gọi M,N,P lần lượt là trung điểm AB,CB,AD, G là trọng tâm tam giác BCD. Tính góc giữa \(\overrightarrow{MG}\) và \(\overrightarrow{NP}\)

NL
5 tháng 2 2021 lúc 2:04

Hướng dẫn (khuya quá rồi).

Trong mp (ADN), lấy Q thuộc AD sao cho \(NP||GQ\)

\(\Rightarrow\left(\overrightarrow{MG};\overrightarrow{NP}\right)=\left(\overrightarrow{MG};\overrightarrow{GQ}\right)=180^0-\widehat{MGQ}\)

Áp dụng định lý hàm cos là tính được (\(GP=\dfrac{2}{3}NP\) ; tính MQ dựa vào hàm cos tam giác AMQ)

Bình luận (3)

Các câu hỏi tương tự
MA
Xem chi tiết
MA
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
JE
Xem chi tiết
BP
Xem chi tiết
ND
Xem chi tiết