Cho tứ diện ABCD có BC=a, C D = a 3 , B C D ^ = A B C ^ = A D C ^ = 90 ° . Góc giữa hai đường thẳng AD và BC bằng 60 ° . Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD.
A. a 3 2
B. a 3
C. a
D. a 7 2
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh AB = a (a>0) Góc giữa mặt bên và mặt đáy bằng 60 ° Tính thể tích khối chóp S.ABCD:
A. a 3 3 2
B. a 3 6
C. a 3 3 3
D. a 3 3 6
Cho tứ diện ABCD có BC = 3, CD = 4, B C D ⏜ = A B C ⏜ = A D C ⏜ = 90 ° . Góc giữa hai đường thẳng AD và BC bằng 60 ° . Tính thể tích khối cầu ngoại tiếp tứ diện ABCD
A. 127 127 π 6
B. 52 13 π 3
C. 28 7 π 3
D. 32 3 π
Cho tứ diện đều ABCD. Góc giữa hai đường thẳng AB và CD bằng
A. 600
B. 900
C. 450
D. 300
Cho khối tứ diện ABCD có B C = 3 , C D = 4 , A B C ^ = B C D ^ = A D C ^ = 90 ° Góc giữa hai đường thẳng AD và BC bằng 60 ° Côsin góc giữa hai mặt phẳng (ABC) và (ACD) bằng
A. 2 43 43
B. 43 86
C. 4 43 43
D. 43 43
Cho tứ diện ABCD có hai mặt ABC và ABD là các tam giác đều. Tính góc giữa hai đường thẳng AB và CD.
A. 30 °
B. 60 °
C. 90 °
D. 120 °
Cho tứ diện ABCD với A C = 3 2 A D , C A B ^ = D A B ^ = 60 ° , C D = A D . Gọi φ là góc giữa hai đường thẳng AB và CD. Chọn khẳng định đúng về góc φ
A. φ = 30 °
B . φ = 60 °
C. cos φ = 1 4
D. cos φ = 3 4
Cho khối tứ diện ABCD có B C = 3 ; C d = 4 ; A B C ^ = B C D ^ = A D C ^ = 90 ∘ Góc giữa hai đường thẳng AD và BC bằng 60 độ Côsin góc giữa hai mặt phẳng (ABC) và (ACD) bằng
A. 2 43 43
B. 43 86
C. 4 43 43
D. 43 43
Cho hình tứ diện đều ABCD cạnh bằng a, gọi d là khoảng cách giữa hai đường thẳng AB và CD .Tìm d
A. d(AB;CD)=a
B. d(AB;CD)=a/3
C. d(AB;CD)=a/2
D. d A B ; C D = a 2 2