HT

Cho tg ABC vuông tại A, đường cao AH. Biết AB =6cm, AC =8cm A) nêu các tam giác đồng dạng và giải thích B) tính AH, HB, HC C) CMR AH²=HB.HC, AB²=HB.BC

MP
1 tháng 5 2023 lúc 16:02

a. Xét  Δ HBA và  Δ ABC

     \(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)

      \(\widehat{B}\) chung

\(\Rightarrow\)  Δ HBA \(\sim\)  Δ ABC (g.g) (1)

 Xét  Δ HAC và  Δ ABC:

     \(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)

       \(\widehat{C}\) chung

\(\Rightarrow\)  Δ HAC \(\sim\)  Δ ABC (g.g) (2)

Từ (1) và (2) \(\Rightarrow\) Δ HBA  \(\sim\)  Δ HAC 

b. Ta có:  Δ ABC vuông tại A

  Theo đ/lí Py - ta - go:

  BC2 = AB2 + AC2 

  BC2 = 62 + 82

\(\Rightarrow\) BC2 = 100

\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm

Ta có: Δ HBA  \(\sim\)  Δ ABC: 

   \(\dfrac{HA}{AC}\) = \(\dfrac{BA}{BC}\) 

\(\Rightarrow\) \(\dfrac{HA}{8}\) = \(\dfrac{6}{10}\) 

\(\Rightarrow\) HA = 4,8 cm

 \(\dfrac{HB}{AB}\) = \(\dfrac{BA}{BC}\)  \(\Leftrightarrow\) \(\dfrac{HB}{6}\) = \(\dfrac{6}{10}\) 

\(\Rightarrow\) HB = 3,6 cm

Ta có:  Δ HAC \(\sim\)  Δ ABC

 \(\dfrac{HC}{AC}\) = \(\dfrac{AC}{BC}\) 

\(\Rightarrow\) \(\dfrac{HC}{8}\) = \(\dfrac{8}{10}\) 

\(\Rightarrow\) HC = 6,4cm

c. Ta có: Δ HBA \(\sim\)  Δ HAC

  \(\dfrac{HA}{HB}\) = \(\dfrac{HC}{HA}\) 

AH2 = HB . HC

Ta có : Δ HBA  \(\sim\)  Δ ABC 

    \(\dfrac{BA}{BC}\) = \(\dfrac{HB}{AB}\) 

\(\Rightarrow\) AB2 = HB . BC

 

 

Bình luận (0)
HT
1 tháng 5 2023 lúc 14:40

Giúp mik với. Cần gấp ạaaaaa

Bình luận (0)
NT
1 tháng 5 2023 lúc 14:41

a: Xet ΔBAH vuông tại H và ΔBCA vuông tại A có

góc B chung

=>ΔBAH đồng dạng với ΔBCA

Xét ΔCHA vuông tại H và ΔCAB vuông tại A có

góc C chung

=>ΔCHA đồng dạng với ΔCAB

=>ΔHAB đồng dạng với ΔHCA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

HB=6^2/10=3,6cm

HC=10-3,6=6,4cm

c: ΔABC vuông tại A

mà AH vuông góc BC

nên AH^2=HB*HC; AB^2=BH*BC

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NY
Xem chi tiết
HT
Xem chi tiết
LM
Xem chi tiết
KM
Xem chi tiết
LH
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết