Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEH. AB>AC
cho tam giác ABC vuông tại A có AH là đường cao. Gọi chân đường vuông góc hạ từ H xuống AB,AC lần lượt tại M và N. Gọi I, K lần lượt là trung điểm cảu BH và HC.
a, Tứ giác IMNK là hình gì? Vì sao?
b, Gọi O là trung điểm của BC. CMR OA vuông góc với MN
c, Tính diện tích tứ giác IMNK biết BH=4cm, CH=9cm
d, CMR \(AB^2.CN=AC^3.BM\)
Cho tam giác ABC có 3 góc nhọn. Đường tròn tâm O đường kính BC cắt AB tại E, cắt AC tại F. Các tia BF cắt CE cắt nhau tại H. CMR:
a) AH vuông góc với BC
b) Gọi K là giao điểm của AH và BC. CMR: FB là phân giác của góc EFK
c) Gọi M là trung điểm của BH. CMR: tứ giác EMKF nt
Cho tam giác ABC có ba góc nhọn. Đường tròn tâm O đường kính BC cắt AC tại E cắt AC tại F . Các tia BF và CE cắt nhau tại H . CMR
a) AH vuông goác BC
b) Gọi K là giao điểm của AH và BC. CMR: FB là phân giác góc EFK
c) Gọi M là trung điểm BH. CMR: EMKF nội tiếp
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H, AH cắt EF tại K. Gọi I là trung điểm AH
1) Gọi M là trung điểm BC, kẻ đường kính AP. Chứng minh M là trung điểm của HP.
2) Chứng minh BH/BA + CH/CA = EF/KA.
3) Gọi S là giao điểm của hai đường thắng OI và MK. Chứng minh AS song song với BC.
Cho tam giác ABC cân tại A , đường cao AH. Trên cạnh AB lấy điểm M, trên tia đối của CA lấy điểm N sao cho BM=CN, MN cắt BC tại D.
a/ C/m D là trung điểm MN
b/ Đường trung trực của đoạn thẳng MN cắt AH tại E. Biết AB=6cm, BE=4,5cm. Tính S tam giác ABC
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, đường trung tuyến AM (H, M thuộc BC)
1, Cho AB = 6, BC = 10. Tính BH và sin góc ACB
2, Gọi D là điểm đối xứng của A qua M. Chứng mình rằng CD2 = BH.BC
3, Đường thẳng AH cắt hai đường thẳng BD và CD lần lượt tại T và Q. Gọi P là giao điểm của 2 đường thẳng CT và BQ. Chứng mình rằng T là trực tâm của tam giác BCQ
Cho tam giác vuông ABC vuông tại A, với AC<AB, AH là đường cao kẻ từ đỉnh A. Các tiếp tuyến tại A và B với đường tròn (O) ngoại tiếp tam giác ABC cắt nhau tại M. Đoạn MO cắt cạnh AB ở E. Đoạn MC cắt đường cao AH tại F. Kéo dài CA cắt đường thẳng BM ở D. Đường thẳng BF cắt đường thẳng AM ở N.
(1. C/m OM//CD và M là trung điểm của BD)
2. C/m EF//BC
3, C/m HA là tia phân giác góc MHN
4, Trên tia BA lấy điểm K sao cho BK=3.BA. Kẻ đường thẳng Ky vuông góc với KC tại K cắt BD tại G. C/m tam giác AKG cân.
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Gọi M và N lần lượt là hình chiếu của H trên AB và AC.
Qua A kẻ đường thẳng vuông góc với MN cắt BC tại K . CM K là trung điểm của BC. (chỉ ý này thôi ạ)
--------------
(Các ý trước:
a) Giả sử HB = 3, 2 cm , HC = 7,2cm . Tính HA , AC và góc B ; góc C
b) Chứng minh: AM.AB = AN.AC và HB.HC = AM.MB + AN.NC