Cho hai tập hợp \(A=\left(0;+\infty\right)\) và \(B=\left\{x\in R|mx^2-4x+m-3=0\right\}\). Tìm m để B có đúng 2 tập hợp con và \(B\subset A\)
Cho tập hợp A = (-∞; m] và B = {x ∈ R : (x2 + 1)(x - 2) > 0. Giá trị của m để A ∪ B = ℝ là
A. m > 0
B. m ≥ 2
C. m ≥ 0
D. m > 2
Tìm tất cả các giá trị nguyên của m để các tập hợp sau là tập hợp rỗng.
a) A = {x ∈ R | x < m + 3 và x > 4m + 3}.
b) B = {x ∈ R | x^2 − 2x + m + 9 = 0}
1, Cho m là một tham số thực và hai tập hợp A =[ 1-2m; m+3], B = {x thuộc R| x>= 8-5m}. Tìm tất cả các giá trị m để A giao B= rỗng 2, Cho các tập hợp khác rỗng A= ( âm vô cực; m) và B=[ 2m - 2; 2m +2]. Tìm m thuộc R để CR (A hợp B) là một khỏang
cho hai tập hợp:
A={x\(\in\)R|\(x^2\)+x-6=0 hoặc 3\(x^2\)-10x+8=0};
B={x\(\in\)R|\(x^2\)-2x-2=0 và 2\(x^2\)-7x+6=0}.
a) viết tập hợp A,B bằng cách liệt kê các phần tử của nó.
b) tìm tất cả các tập hợp sao cho \(B\subset X\) và \(X\subset A\).
cho 2 tập hợp A={x\(\in\)R|(x-1)(x-2)(x-4)=0}, B={n\(\in\)N|n là ước của 4}. 2 tập hợp A và B, tập hợp nào là tập con của tập còn lại. 2 tập hợp A và B có bằng nhau không.
Cho tập hợp A = {x ∈ R: |3x - 2| ≥ 4} và B = (m; m + 2]. Giá trị của m để A ∩ B = ∅ là:
A. (-∞; - 2 3 ) ∪ [2; +∞)
B. [ - 2 3 ; 0)
C. (-∞; - 2 3 ] ∪ [2; +∞)
D. ( - 2 3 ; 2)
PHẦN TỰ LUẬN: Bài 1: Cho A={ x€R| (x^4 -16)(x² -1)=0} và B={x€N| 2x-9≤0}. Tìm tập hợp X sao cho: X⊂B\A Bài 2: Cho tập hợp A={-1;1;5;8}, B="gồm các ước số nguyên dương của 16"
[2] Cho hai tập hợp A = { x ∈ N | 4x < 13 } và B = { x ∈ Z | \(x^2\) < 2 }. Tìm A ∪ B
A. A ∪ B = { 0; 1; 2 } B. A ∪ B = { -1; 0; 1; 2; 3 } C. A ∪ B = { -1; 0; 1 }
D. A ∪ B = { -1; 1; 2 }