Bài 5. ÔN TẬP CUỐI NĂM

PV

Cho \(tan\alpha=3\). Tính \(\frac{2sin\alpha+3cos\alpha}{4sin\alpha-5cos\alpha};\frac{3sin\alpha-2cos\alpha}{5sin\alpha+4cos^3\alpha}\).

NL
8 tháng 5 2019 lúc 14:39

\(\frac{2sina+3cosa}{4sina-5cosa}=\frac{\frac{2sina}{cosa}+\frac{3cosa}{cosa}}{\frac{4sina}{cosa}-\frac{5cosa}{cosa}}=\frac{2tana+3}{4tana-5}=\frac{6+3}{12-5}=\frac{9}{7}\)

\(\frac{3sina-2cosa}{5sina+4cos^3a}=\frac{\frac{3sina}{cosa}-\frac{2cosa}{cosa}}{\frac{5sina}{cosa}+\frac{4cos^3a}{cosa}}=\frac{3tana-2}{5tana+4cos^2a}=\frac{3tana-2}{5tana+\frac{4}{1+tan^2a}}=\frac{9-2}{15+\frac{4}{10}}=\frac{5}{11}\)

Bình luận (0)

Các câu hỏi tương tự
PV
Xem chi tiết
PV
Xem chi tiết
PV
Xem chi tiết
PV
Xem chi tiết
PV
Xem chi tiết
AH
Xem chi tiết
LU
Xem chi tiết
DD
Xem chi tiết
NL
Xem chi tiết