a: Xét ΔPQE và ΔPRD có
PQ=PR
\(\widehat{QPE}\) chung
PE=PD
Do đó: ΔPQE=ΔPRD
b: Xét ΔMQR có \(\widehat{MQR}=\widehat{MRQ}\)
nên ΔMQR cân tại M
a: Xét ΔPQE và ΔPRD có
PQ=PR
\(\widehat{QPE}\) chung
PE=PD
Do đó: ΔPQE=ΔPRD
b: Xét ΔMQR có \(\widehat{MQR}=\widehat{MRQ}\)
nên ΔMQR cân tại M
Cho DABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE.
a) Chứng minh DABE = DACD.
b) Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
c) Chứng minh DE//BC
d) Gọi M là trung điểm của BC. Chứng minh A, K, M thẳng hàng
giúp mk vs ạ mk đang cần gấp
Cho tam giác MNP cân tại M . Lấy điểm D trên cạnh MN , điểm E trên cạnh MP sao cho ND=PE Bạn đã gửi a) Chứng minh tam giác NDP=PEN Bạn đã gửi b) Chứng minh tam giác MDP=MEN Bạn đã gửi c) Gọi K là giao điểm của NE và DP. Chứng minh tam giác KNP cân tại K d) Chứng minh MK là tia phân giác của góc NMP Bạn đã gửi e) Lấy H là trung điểm của NP. Chứng minh M ,K ,H là 3 điểm thẳng hàng Bạn đã gửi f) Chứng minh DE//N
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là trung điểm của cạnh DE. Chứng minh rằng ba điểm B, I, C thẳng hàng.
Cho tam giác PQR có PQ=PR. Gọi H là trung điểm của cạnh QR
a) CM : Tam giác PQH = tam giác PRH
b) CM : PH vuông góc QR
c) Trên tia đối của tia HP lấy điểm K sao cho HK = H. CM : PR = RK
d) Gọi E và F lần lượt là trung điểm của PQ và RK. CM : 3 điểm E,H,F thẳng hàng
Cho tam giác ABC cân tại A. Lấy M thuộc cạnh AB và N thuộc cạnh AC sao cho AM=AN.
a) Chứng minh rằng tam giác AMN cân
b) Chứng minh MN//BC
c) Gọi I là giao điểm của CM và BN. Chứng minh 2 tam giác BIC và MIN cân
d) Gọi E là trung điểm MN, F là trung điểm BC. Chứng minh A,E,F,I thẳng hàng
Cho tam giác ABC cân tại đỉnh A. Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD= CE. Gọi I là trung điểm của DE. Chứng minh ba điểm B, I, C thẳng hàng.
cho tam giác ABC cân tại A trên cạnh AB lấy điểm D trên tia đối của tia CA lấy điểm E sao cho BD=CE. Gọi I là trung điểm của DE. Chứng minh ba điểm B, I, C thẳng hàng
cho tam giác pqr có pq=pr.gọi h là trung điểm cạnh qr
a)chứng minh tam giác pq=tam giác prh
b)chứng minh ph vuông góc vs qr
c)trên tia đối của tia hp lấy điểm k sao cho hk=hp. chứng minh pr=rk
d)gọi e và f lần lượt là trung điểm của pq và rk.chứng minh 3 điểm e,h,f thẳng hàng
(mk chỉ cần câu d)
Tks các bn nhiều!
1 ) Cho Δ ADE cân tại A . Trên cạnh DE lấy các điểm B và C sao cho DB = EC , nhỏ hơn 1/2 DE .
a ) Δ ABC là tam giác gì ?
b ) Vẽ BM ⊥ AD , CN ⊥ AE . Chứng minh : CM = CN
c ) Gọi I là giao điểm của MB và NC . Δ IBC là tam giác gì ?
d ) Chứng minh : AI là tia phân giác của góc BAC
2 ) Cho Δ ABC cân tại A . Vẽ BH ⊥ AC . Gọi D là 1 điểm thuộc cạnh đáy BC . Vẽ DE ⊥ AC , DF ⊥ AB . Chứng minh : DE + DF = BH