PB

Cho tam giác OAB đều cạnh a. Trên đường thẳng d qua O và vuông góc với mặt phẳng (OAB) lấy điểm M sao cho OM=x. Gọi E, F lần lượt là hình chiếu vuông góc của A trên MB và OB. Gọi N là giao điểm của EF và OM. Tìm x để thể tích tứ diện ABMN có giá trị nhỏ nhất

A. x = a 2 .

B. x = a 2 2 .

C. x = a 6 12 .

D. x = a 3 2 .

CT
22 tháng 5 2018 lúc 6:27

Đáp án B

Ta có

A F ⊥ O B , A F ⊥ M O ⇒ A F ⊥ M O B ⇒ A F ⊥ M B

  M B ⊥ A E nên  M B ⊥ A E F ⇒ M B ⊥ E F   .

Suy ra Δ M O B ∽ Δ M E N  , mà Δ M E N ∽ Δ F O N nên Δ M O B ∽ Δ F O N . Khi đó  O B O M = O N O F ⇒ O N = O B . O F O M = a . a 2 x = a 2 2 x   .

Từ

V A B M N = V M . O A B + V N . O A B = 1 3 . S Δ O A B . O M + O N = 1 3 . a 2 3 4 . x + a 2 2 x

⇒ V A B M N = a 2 3 12 x + a 2 2 x ≥ a 2 3 12 .2 x . a 2 2 x = a 2 3 12 . 2 a = a 3 6 12

Dấu “=” xảy ra

⇔ x = a 2 2 x ⇔ 2 x 2 = a 2 ⇔ x = a 2 2 .

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết