PB

Cho tam giác OAB đều cạnh a. Trên đường thẳng d qua O và vuông góc với mặt phẳng (OAB) lấy điểm M sao cho O M = x . Gọi E, F lần lượt là hình chiếu vuông góc của A trên MB và OB. Gọi N là giao điểm của EF và d. Tìm x để thể tích tứ diện ABMN có giá trị nhỏ nhất.

A. x =  a 2

B. x = a 2 2

C. x = a 3 2

D. x = a 6 12

CT
16 tháng 7 2019 lúc 14:44

 

Do tam giác OAB đều cạnh a suy ra F là trung điểm OB =>  O F = a 2

Đẳng thức xảy ra khi và chỉ khi 

Chọn B.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết