a: Xét ΔMNP có
MD/ND=ME/EP
Do đó: DE//NP
b: XétΔMNI có DK//NI
nên DK/NI=MD/MN
hay DK/IP=3/7(1)
Xét ΔMIP có KE//IP
nên ME/MP=KE/IP
hay KE/IP=3/7(2)
Từ (1) và (2) suy ra DK=KE
hay K là trung điểm của DE
a: Xét ΔMNP có
MD/ND=ME/EP
Do đó: DE//NP
b: XétΔMNI có DK//NI
nên DK/NI=MD/MN
hay DK/IP=3/7(1)
Xét ΔMIP có KE//IP
nên ME/MP=KE/IP
hay KE/IP=3/7(2)
Từ (1) và (2) suy ra DK=KE
hay K là trung điểm của DE
Cho tam giác ABC, trên AB lấy I và K sao cho AI=IK=KB, trên BC lấy D và E sao cho BD=DE=EC. Trên AC lấy F và G sao cho AF=FG=GC. Gọi M là giao điểm của AD và BF, N là giao điểm của BG và CK, P là giao điểm của AE và CI.
a) Chứng minh rằng: Các cạnh của tam giác MNP song song với các cạnh của tam giác ABC
b) Tính diện tích tam giác MNP theo diện tích tam giác ABC
cho tam giác ABC. Gọi M và N lần lượt là trung điểm của AB và CD. Gọi P,Q lần lượt là trung điểm của BM và CN. chứng minh rằng MN//PQ
Cho tam giác đều ABC , Trên tia đối của tia AB , lấy điểm D và trên tia đối của tia AC , lấy điểm E sao cho AD = AE . Gọi M,N lần lượt là trung điểm của AE , AB và CD . Chứng minh : tam giác MNP là tam giác đều .
Cho tam giác ABC. AM là đường trung tuyến, đường thẳng song song với BC cắt các đoạn thẳng AB,AC,AM lần lượt tại D,E,N. a)Chứng minh N là trung điểm DE.
b) Gọi S là giao điểm của BN vả AC,K là giao điểm của CN và AB. Chứng minh KS//BC.
cho tam giác ABC vuông tại A(AB<AC).Gọi I,M,K lần lượt là trung điểm của AB,BC,AC.
a/chứng minh rằng tứ giác AIMK là hcn
b/trên tia MI lấy E sao cho I là trung điểm ME,trên tia MK lấy F sao cho K là trung điểm MF.Chứng minh rằng IK//È và EF=2IK.
c/vẽ AH vuông góc BC tại H .chứng minh rằng tứ giác IKMH là hình thang cân.
d/cho Ik=2HK.tính góc ABC
cho tam giác ABC vuông tại A(AB<AC).Gọi I,M,K lần lượt là trung điểm của AB,BC,AC.
a/chứng minh rằng tứ giác AIMK là hcn
b/trên tia MI lấy E sao cho I là trung điểm ME,trên tia MK lấy F sao cho K là trung điểm MF.Chứng minh rằng IK//È và EF=2IK.
c/vẽ AH vuông góc BC tại H .chứng minh rằng tứ giác IKMH là hình thang cân.
d/cho IK = 2HK.tính góc ABC
Cho tam giác ABC nhọn , đường cao AD . Vẽ 2 điểm E và F sao cho AB và AC lần lượt là trung trực của DE và DF . Gọi giao điểm EF với AB và AC theo thứ tự là K và I . Chứng minh rằng 3 đường thẳng AD , BI , CK đồng quy tại 1 điểm . Ai giúp mik giải bài này với . Mik cảm ơn
1. Cho hình bình hành ABCD có AB= 2AD. Gọi M, N theo tứ tự là trung điểm của các cạnh AB, CD. Gọi P và Q lần lượt là giao điểm của BN với CM và của AN với DM
a. Tứ giác AMND là hình gì? Vì sao?
b. Chứng minh: tứ giác MPNQ là hình chữ nhật
c. Tìm điều kiện của tứ giác ABCD để MPNQ là hình vuông
d. Chứng minh: bốn đường thẳng AC, BD, MN, QP đồng qui
2. Cho hình bình hành ABCD. Kẻ AN, CM vuông góc với BD, N và M thuộc BD
a. Chứng minh DN = BM
b. Chứng minh Tứ giác ANCM là hình bình hành
c. Gọi K là điểm đối xứng với A qua N. Tứ giác DKCB là hình gì? Vì sao?
d. Tia AM cắt tia KC tại P. Chứng minh các đường thẳng AC, PN, KM đồng qui
b1: cho tam giác nhọn ABC. Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK.
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy