cho tam giác MNP cân tại M,kẻ các đường phân giác NA và PB với A thuộc MP và B thuộc MN.
a)chứng minh MB=MA
b)chứng minh tứ giác NBAP là hình thang cân và có đáy nhỏ bằng cạnh bên.
Cho hình thang ABCD ( AB // CD ) có M,N lần lượt là trung điểm của AD , BC. Phân giác của góc A và góc B cắt MN theo thứ tự tại I, K. Chứng minh rằng
a) Tam giác AIM và tam giác BKN là các tam giác cân;
b) Tam giác AID và BKC là các tam giác vuông
c) IM = 1/2 AD và KN= 1/2 BC.
Cho tam giác MNP vuông tại M (MN<MP). Vẽ đường cao MH(H thuộc NP)
a. Chứng minh tam giác MNP đồng dạng với tam giác HNM
b. Chứng minh MN^2=NH.NP
c. Vẽ tia phân giác MK của góc NMP (K thuộc NP). Biết MN=7,2 cm và MP=9,6 cm. Tính độ dài các đoạn thẳng NP, NH và MK.
cho tam giác abc vuông cân tại a. hai tia phân giác bm và cn cắt nhau tại i ( m thuộc ac, n thuộc ab ) . chứng minh :
a, im=in và mn song song bc
b, qua a và n kẻ đường vuông góc với bm cắt bc lần lượt tại d và e . chứng minh am=de=cd
c, tam giác mcd là tam giác gì ?
d, h là trung điểm của bc. chứng minh ah, bm, cn ddoongwf quy
e, chứng minh bm+am>bc
Cho tam giác ABC cân tại A (A <90°). Gọi M. N lần lượt là trung điểm của AB và AC.
a) Tính MN biết BC =7cm.
b) Chứng minh rằng tử giác MNCB là hình thang cân.
c) Kẻ MI vuông góc với BN tại I, (I thuộc BN) và CK vuông góc với BN tại K (K thuộc BN). Chứng minh rằng : CK=2MI.
d) Kẻ BD vuông góc với MC tại D (D thuộc MC). CMR: DK // BC
cho tam giác ABC có ba góc nhọn và AB < AC.Gọi M,N,P lần lượt là trung điểm của AB,AC,BC.kẻ AQ vuông góc BC(Q thuộc BC)
a)Biết BC=20cm,tính MN và chứng minh tứ giác MNPB là hình bình hành
b)Chứng minh tứ giác MNPQ là hình thang cân
Cho tam giác MNPvuông tại M; DN=DP; D thuộc vào NP; Gọi E;F lần lượt là chung điểm của MN và MP:
a) Chứng minh MEDF là hình chữ nhật
b) Chứng minh tam giác MDN cân biết MN = 8cm, MP = 6cm: Tính MD
c) Tìm điều kiện của tam giác MNP để MEDF là hình vuông
1, Cho hình thang cân ABCD (AB //, AB < CD). Gọi M, N, P, Q lần lượt là trung điểm các đoạn thẳng AD, BD, AC, BC .
a, Chứng minh 4 điểm M, N, P, Q thẳng hàng .
b, Chứng minh tứ giác ABPN là hình thang cân.
c, Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật
2, Cho tam giác ABC. Gọi O là một điểm thuộc miền trong của tam giác M, N, P, Q lần lượt là trung điểm của các đoạn thẳng OB, OC, AC, AB .
a, Chứng minh tứ giác MNPQ là hình bình hành.
b, Xác định vị trí của điểm O Để tứ giác MNPQ là hình chữ nhật
3, Cho tam giác ABC Vuông cân tại C. Trên các cạnh AC , BC lấy lần lượt các điểm P, Q sao cho AP = CQ. Từ điểm B vẽ PM // BC ( M thuộc AB) Chứng minh tứ giác PCQM là hình chữ nhật
M.N VẼ HÌNH GIÚP LUÔN NHÉ. THANKS NHIỀU Ạ
Bài 1: Cho hình thang ABCD có góc A=góc B=90 độ và BC=AB=AD/2. Lấy M thuộc đáy nhỏ BC kẻ Mx vuông góc với MA, Mx cắt DC tại N. Chứng minh rằng: Tam giác AMN vuông cân
Bài 2: Cho tam giác ABC với 3 góc nhọn, trong đó góc A=30 độ. Lấy D là điểm bất kì trên BC. Gọi E, F lần lượt là điểm đối xứng của D qua cạnh AB, AC, EF cắt AB, AC theo thứ tự M,N. a) Chứng minh tam giác AEF đều b) Chứng minh DA là phân giác của góc MDN c) DE, DF lần lượt cắt AB, AC tại P,Q chứng minh MN//PQ