Cho tam giác ABC có AB = AC nội tiếp đường tròn tâm O, đường cao AH
của tam giác cắt đường tròn (O) tại D
a) Chứng minh rằng AD là đường kính của đường tròn tâm O
b) Tính góc ACD
c) Cho BC = 12cm, AC = 10cm. Tính AH và bán kính của đường tròn tâm O
Cho đường tròn (O), đường kính AD = 2R. Vẽ cung tâm D bán kính R, cung nàu cắt đường tròn (O) ở B và C
a) Tứ giác OBCD là hình gì ? Vì sao ?
b) Tính số đo các góc CBD, CBO, OBA ?
c) Chứng minh rằng tam giác ABC là tam giác đều ?
Cho tam giác ABC cân tại A nội tiếp trong đường tròn (O;R) có AB = R.
a, CMR: AO là tia phân giác của góc BAC
b, C/tỏ BC > R. So sánh khoảng cách từ tâm O đến các cạnh của tam giác ABC.
c, Tính theo R độ dài cạnh BC và chiều cao AH hạ từ A đến BC
Cho tam giác ABC cân kẻ đường cao AH cắt đường tròn tâm O ngoại tiếp tam giác tại D
a/ c/m AD là đường kính
Cho tam giác abc cân tại A nội tiếp đường tròn (O;R). Vẽ đường tròn (O;R1)(với R1<R) cắt cạnh AB,AC lần lượt tại E,F và M,N.Cmr MN=EF
Cho nửa đường tròn tâm O đường kính AB , dây CD có độ dài không đổi và khác AB . Gọi I là hình chiếu vuông góc của O trên dây CD . a) Chứng minh I là trung điểm của CD . b) Gọi H K, theo thứ tự là hình chiếu vuông góc của A B, trên CD . Chứng minh I là trung điểm của HK . c) Gọi E là hình chiếu vuông góc của I trên AB . Chứng minh rằng . Diện tích tam giác ACB.diện tích tam giác ADB=IO.AB d*) Tìm vị trí của dây CD để diện tích của tứ giác AHKB là lớn nhất? Làm ơn giúp mình câu c,d với ạ. Mình xin chân thành cảm ơn
Từ A ngoài (O) vẽ tiếp tuyến AB, AC đến (O). Kẻ đường kính DB, vẽ CE DB, AD cắt CE tại I. a. Chứng minh AC.CD = CE.AO. b. Chứng minh I là trung điểm CE. c. Biết OA = 2R. Chứng minh ABC đều và tính BCE S theo R d. Trên tia đối của BC lấy S. Từ S vẽ 2 tiếp tuyến SM, SN đến (O). Chứng minh: 3 điểm A, M, N thẳng hàng.
(ko cần vẽ hình)
Cho tam giác ABC (AB < AC) có hai đường cao BD và CE cắt nhau tại H. Lấy I là trung điểm của BC.
a) Gọi K là điểm đối xứng của H qua I. CMR: tứ giác BHCK là hình bình hành
b) Xác định tâm O của đường tròn qua các điểm A, B, K, C
c) Chứng minh: OI // AH
d) CMR: BE.BA + CD.CA = \(BC^2\)