HN

Cho tam giác đều ABC cạnh bằng a và điểm M di động trên đường thẳng BC. Tính độ dài nhỏ nhất của vectơ u= MA +MB+ MC.

NL
12 tháng 11 2021 lúc 22:41

Gọi G là trọng tâm tam giác

\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)

\(=\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}\) khi \(MG_{min}\)

\(\Rightarrow M\) là chân đường vuông góc hạ từ G xuống BC hay M là trung điểm BC

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=3MG=AM=\dfrac{a\sqrt{3}}{2}\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết