H24

cho tam giác DEF cân tại D vẽ DH vuông góc EF tại H
a/ chứng minh tam giác DEH = tam giác DFH. Suy ra H là trung điểm của EF
b/ lấy M ϵ DE, N ϵ DF, sao cho MD = ND. Chứng minh tam giác HMN là tam giác cân
c/ chứng minh MN // EF
d/ Gọi i là trung điểm của MN. Chúng minh D, I, H thẳng hàng

YK
26 tháng 3 2023 lúc 21:00

a) xét tam giác DHE và tam giác DHF có

DH chung

DE = DF (gt)

góc DHE = góc DHF (=90 độ)

=> tam giác DHE = tam giác DHF (c.g.c)

=> HE = HF

=> H là trung điểm của EF

b) xét tam giác EMH và tam giác FNH có

HE = HF (cmt)

Góc MEH = góc MFH (gt)

Góc EHM = góc FHM (đối đỉnh)

=> tam giác EMH = tam giác FNH (g.c.g)

=> HM = HN

=> tam giác HMN cân tại H

Bình luận (0)
NT
27 tháng 3 2023 lúc 1:15

a: Xét ΔDEH vuông tại H và ΔDFH vuông tại H có
DE=DF
DH chung

=>ΔDEH=ΔDFH

=>EH=FH

=>H là trung điểm của EF

b: Xet ΔDMH và ΔDNH có

DM=DN

góc MDH=góc NDH

DH chung

=>ΔDMH=ΔDNH

=>HM=NH

c: Xet ΔDEF có DM/DE=DN/DF

nên MN//EF

d: ΔDMN cân tại D

mà DI là trug tuyến

nên DI là phân giác của góc EDF

=>D,I,H thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
KH
Xem chi tiết
HK
Xem chi tiết
KC
Xem chi tiết
HN
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
UY
Xem chi tiết