a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: BN=6-4=2(cm)
Xét ΔCBN vuông tại B có
\(CN^2=BN^2+BC^2\)
hay \(CN=2\sqrt{17}\left(cm\right)\)
a, Ta có:
\(AB^2+BC^2=6^2+8^2=36+64=100\left(cm\right)\)
\(AC^2=10^2=100\left(cm\right)\)
\(\Rightarrow AB^2+BC^2=AC^2\)
\(\Rightarrow\Delta ABC\) vuông tại B (định lý Pi-ta-go đảo)
b, Ta có: \(BN=AB-AN=6-4=2\left(cm\right)\)
Xét ΔCBN vuông tại B có:
\(NB^2+BC^2=CN^2\\ \Rightarrow CN=\sqrt{NB^2+BC^2}\\ \Rightarrow CN=\sqrt{2^2+8^2}\\ \Rightarrow CN=2\sqrt{17}\left(cm\right)\)