BM

Cho tam giác ABC vuônh tại A (AB<AC) Có AH là đường cao. Vẽ HD vuông góc AB tại D, HE vuông AC tại E

a, Chứng minh Tứ giác ADHE là hình chữ nhật

b, Trên tia đối của tia AC lấy F sao cho AE=AF. Chứng minh tứ giác AFDH là hình bình hành

c, Gọi M là điểm đối xứng của B qua A. Chứng minh Tứ giác EMFB là hình thoi

GIÚP EM VỚI Ạ E CẢM ƠN E CẦN GẤP Ạ

NT
3 tháng 12 2023 lúc 14:38

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ADHE là hình chữ nhật

=>AD//HE và AD=HE; AE//HD và AE=HD

AE=HD

A\(\in\)EF

Do đó: HD//AF

AE=HD

AE=AF

Do đó: HD=AF

Xét tứ giác AHDF có

AF//DH

AF=DH

Do đó: AHDF là hình bình hành

c:

AC và AF là hai tia đối nhau

mà E\(\in\)AC

nên AE và AF là hai tia đối nhau

=>A nằm giữa E và F

mà AE=AF

nên A là trung điểm của EF

Xét tứ giác EBFM có

A là trung điểm chung của EF và BM

nên EBFM là hình bình hành

Hình bình hành EBFM có EF\(\perp\)BM

nên EBFM là hình thoi

Bình luận (1)

Các câu hỏi tương tự
AT
Xem chi tiết
CK
Xem chi tiết
HA
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
LN
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết