\(A=90^0-B=90^0-25^0=65^0\)
\(A=90^0-B=90^0-25^0=65^0\)
1) Trong mặt phẳng tọa độ Oxy, cho A(1;2), B(3;-4). Tìm tọa độ điểm C sao cho tam giác ABC vuông tại C và có góc B bằng 60o.
2) Cho tam giác ABC có góc nhọn B, AD và CE là hai đường cao.
Biết rằng SABC = 9SBDE, DE=2\(\sqrt{2}\) . Tính cosB và bán kính đường tròn ngoại tiếp tam giác ABC.
Cho tam giác ABC có ba cạnh là a, b, c là \(a=x^2+x+1\), \(b=2x+1\), \(c=x^2-1\). Chứng minh rằng tam giác có một góc bằng 120 độ.
Cho tam giác ABC vuông tại A, = 58° và a = 72 cm. Tính góc C, cạnh b,c, đường cao ha, hb và đường trung tuyến ma, mb, mc
Cho tam giác đều ABC có cạnh bằng 6cm. Một điểm M nằm trên cạnh BC sao cho BM = 2cm.
a) Tính độ dài đoạn thẳng AM và tính côsin của góc \(\widehat{BAM}\)
b) Tính bán kính đường tròn ngoại tiếp tam giác ABM
c) Tính độ dài trung tuyến vẽ từ đỉnh C của tam giác ACM
d) Tính diện tích tam giác ABM
a) Cho tam giác ABC có a=7, b=8, c=5. Tính góc A và bán kính đường tròn nội tiếp của tam giác ABC? b) Chứng minh rằng: trong một hình bình hành tổng các bình phương 4 cạnh bằng tổng các bình phương 2 đường chéo
Cho tam giác ABC, có BC = a, góc A = α và hai trung tuyến BM và CN vuông góc với nhau. Tính S.ABC
Tính các góc A, B và các độ dài ; R của tam giác ABC biết
a.
b.
Bài 1: Cho tam giác ABC vuông tại A.CMR: \(m^2_b +m^2_c =5m^2_a\)
Bài 2: Cho tam giác ABC thỏa mãn \(\frac{a^3+b^3-c^3}{a+b-c}=c^2\). Tìm số đo của \(\widehat{C}\)
Bài 3: Nhận dạng tam giác ABC nếu \(\frac{a^3+c^3-b^3}{a+c-b}=b^2\) và \(sinA.sinC=\frac{3}{4}\)