Ôn tập cuối năm phần hình học

PP

Cho tam giác ABC vuông tại A vẽ đường cao AH, AB = 6 cm, AC = 8 cm

a) Cm : \(\Delta\)HBA \(\sim\) \(\Delta\)ABC

b) Tính BC, AH, BH

c) Cm: AH\(^2\) = HB.HC

d) Gọi I và K lần lượt là hình chiếu của điểm H lên cạnh AB, AC

Cm AI.AB = AK.AC

AK
16 tháng 5 2018 lúc 9:27

Hỏi đáp Toán

a. Xét \(\Delta HBA\)\(\Delta ABC\) có:

\(\widehat{B}\left(chung\right)\)

\(\widehat{BHA}=\widehat{BAC}\left(=90^0\right)\)

Do đó: \(\Delta HBA\infty\Delta ABC\left(g-g\right)\)

b. Vì \(\Delta ABC\) vuông tại A
=> \(AB^2+AC^2=BC^2\)

hay \(6^2+8^2=BC^2\)

=> \(\sqrt{BC}=\sqrt{100}\)

=> BC = 10cm

\(\Delta HBA\infty\Delta ABC\left(cmt\right)\)

=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\)

hay \(\dfrac{AH}{8}=\dfrac{6}{10}\)

=> AH = 4,8 cm

\(\Delta ABH\) vuông tại H

=> \(BH^2+AH^2=AB^2\)

hay \(BH^2=6-4,8\)

=> BH = 1,2 cm

c. Xét \(\Delta ABC\)\(\Delta HAC\) có:

\(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)

\(\widehat{C}\left(chung\right)\)

Do đó: \(\Delta ABC\infty\Delta HAC\left(g-g\right)\)

\(\Delta HBA\infty\Delta ABC\left(cmt\right)\)

=> \(\Delta HAC\infty\Delta HBA\)

=> \(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

hay \(AH^2=HB.HC\)

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
YP
Xem chi tiết
TB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
BN
Xem chi tiết
CO
Xem chi tiết
NK
Xem chi tiết