a.
Xét tam giác HBA và tam giác ABC có:
góc H = A= 90o
góc B chung
Do đó: tam giác HBA~ABC(g.g)
b.
Ta có tam giác ABC vuông tại A
=> BC2 = AB2 + AC2
=> BC2 = 62 + 82
=> BC = 10 (cm)
Ta có tam giác HBA~ABC
=> \(\dfrac{HA}{AC}=\dfrac{AB}{BC}\Rightarrow HA=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\)
Tam giác ABH vuông tại H
=> AB2 = AH2 + BH2
=> BH2 = AB2 - AH2
=> BH2 = 62 - 4,82
=> BH2 = 3,6 cm
c. Xét tam giác HBA và tam giác HAC có:
góc H = 90o
góc HBA = HAC ( cùng phụ góc C)
Do đó: tam giác HBA~HAC( g.g)
=> \(\dfrac{HA}{HC}=\dfrac{HB}{HA}\Rightarrow AH.AH=HB.HC\)
d.
Ta có:
góc I = K = A = 90o
=> AIHK là hình chữ nhật
=> IH = AK; IA = HK
Ta có tam giác HBA~ABC
=> \(\dfrac{HA}{AC}=\dfrac{AB}{BC}\) hay \(\dfrac{IK}{AC}=\dfrac{AB}{BC}\)
Xét tam giác IBH và tam giác ABC có:
góc I = A = 90o
góc B chung
Do đó: tam giác IBH~ABC (g.g)
=> \(\dfrac{IH}{AC}=\dfrac{BH}{BC}\Rightarrow IH=\dfrac{BH.AC}{BC}=\dfrac{3,6.8}{10}=2,88\)
HC = 10 - HB = 10- 3,6 = 6,4 (cm)
Xét tam giác KHC và tam giác ABC có:
góc K = A = 90o
góc C chung
Do đó: tam giác KHC~ABC (g.g)
=> \(\dfrac{KH}{AB}=\dfrac{HC}{BC}\Rightarrow KH=\dfrac{AB.HC}{BC}=\dfrac{6.6,4}{10}=3,84\) (cm)
Ta có:
\(\dfrac{IH}{KH}=\dfrac{2,88}{3,84}=\dfrac{3}{4};\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow\dfrac{IH}{KH}=\dfrac{AB}{AC}\)
mà \(\dfrac{IH}{KH}=\dfrac{AK}{AI}\Rightarrow\dfrac{AK}{AI}=\dfrac{AB}{AC}\)
=> AI.AB = AK.AC
bạn tự vẽ hình......
a) Xét \(\Delta\)HBA và \(\Delta\)ABC có:
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
\(\widehat{B}\) là góc chung
\(\Rightarrow\)\(\Delta\)HBA đồng dạng vs \(\Delta\)ABC
b) Trong \(\Delta\)ABC vuông tại A có:
BC2 = AB2 + AC2
= 62 + 82
= 100
\(\Rightarrow\) BC = 10(cm)
Vì \(\Delta\)HBA đồng dạng vs \(\Delta\)ABC
\(\Rightarrow\) \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
Trong \(\Delta\)HAB vuông góc tại H có:
BH2 = AB2 - AH2 (suy ra từ định lý pytago)
= 62 - 4,82
= 12.96
\(\Rightarrow\) BH = 3,6 (cm)
c) Xét \(\Delta\)HAC và \(\Delta\)ABC có:
\(\widehat{AHC}=\widehat{BAC}\left(=90^o\right)\)
\(\widehat{C}\) là góc chung
\(\Rightarrow\) \(\Delta\)HAC đồng dạng vs \(\Delta\)ABC
Mà \(\Delta\)HBA đồng dang vs \(\Delta\)ABC
\(\Rightarrow\) \(\Delta\)HAC đồng dạng vs \(\Delta\)HBA
\(\Rightarrow\) \(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)
\(\Rightarrow\) AH2 = HB.HC
d) Vì \(\Delta\)HBA đồng dạng với \(\Delta\)ABC
\(\Rightarrow\widehat{BAH}=\widehat{BCA}\) (2 góc tương ứng)
Hay \(\widehat{HAI}=\widehat{BCA}\)
Vì tứ giác AKHI có:
\(\widehat{A}=\widehat{K}=\widehat{I}\left(=90^o\right)\)
\(\Rightarrow\) AKHI là hình chữ nhật
\(\Rightarrow\) \(\widehat{HAI}=\widehat{KIA}\) (t/chất)
Mà \(\widehat{HAI}=\widehat{BCA}\)
\(\Rightarrow\) \(\widehat{KIA}=\widehat{BCA}\)
Xét \(\Delta\) AKI và \(\Delta\)ABC có:
\(\widehat{A}\) là góc chung
\(\widehat{KIA}=\widehat{BCA}\)
\(\Rightarrow\) \(\Delta\)AKI đồng dạng vs \(\Delta\)ABC
\(\Rightarrow\)\(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)
\(\Rightarrow\) AB.AI = AC.AK
d) Cách khác:
Xét \(\bigtriangleup AHB(\widehat{BHA}=90^{\circ})\)
...........AI . AB = AH2 (Hệ thức lượng giác trong tam giác vuông)
Xét \(\bigtriangleup AHC(\widehat{AHC}=90^{\circ})\)
..........AK . AC = AH2 (Hệ thức lượng giác trong tam giác vuông)
=> AI . AB = AK . AC