MH

cho tam giác ABC vuông tại A và M là trung điểm BC. từ M kẻ MH vuông góc AB ( H thuộc AB) và MK vuông góc AC ( K thuộc AC) ; a) chứng minh: AHMK là hình chữ nhật; b) chứng minh:BHKM là hình bình hành;c) gọi E trung điểm của MH. chứng minh:B,E,K thẳng hàng

MH
12 tháng 11 2021 lúc 17:02

dạ cô vẽ dùng em hình

a, xét tứ giác AHMK có

góc MHA=90 độ( MH ⊥ Ab-gt)

góc MKA=90 độ( MK⊥ AC-gt)

góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)

-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn)2). Có : MH vuông góc với AB ( gt )

              AC vuông góc với AB ( 
Δ
ABC vuông tại A)

=> MH//AC 

Xét tam giác ABc có

MH//AC( cmt)

M là trung điểm BC (gt)

=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)
. Có: MK vuông góc AC ( gt)

AB vuông góc AC( tam giác ABC vuông tại A )

=> MK//AB

Có:MK//AB(cmt)

M là trung điểm BC ( gt)

=> K là trung điểm AC ( định lý đường trung bình của tam giác )

Có : H là trung điểm AB ( cmt)

=. BH=1/2AB

Xét tam giác ABC có

M là trung điểm BC(cmt)

K là trung điểm AC ( cmt)

=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)

=> MK=1/2AB

( tính chất đường trung bình của tam giác)

=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH

Có MK=1/2AB

BH= 1/2AB

=> MK=BH

Mà MK//BH(cmt)

=> BMKH là hình bình hành

VÌ BMKH là hình bình hành (cmt)

=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường 

Mà E là trung điểm HM ( gt)

=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)

Bình luận (0)
MH
12 tháng 11 2021 lúc 17:03

mình tự làm ne chắc do mạng mình bị lỗi bắm nhầm phải

Bình luận (0)
NC
26 tháng 12 2023 lúc 8:37

Ăn chanh ko

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
TN
Xem chi tiết
NK
Xem chi tiết
PL
Xem chi tiết
PL
Xem chi tiết
MT
Xem chi tiết
VT
Xem chi tiết
LN
Xem chi tiết
3T
Xem chi tiết