a)Xét ∆ABC và ∆AMC ta có:
AB = AM (GT)
^A1=^A2= 90 độ (GT)
AC là cạnh chung
Do đó: ∆ABC = ∆AMC (c.g.c)
a)Xét ∆ABC và ∆AMC ta có:
AB = AM (GT)
^A1=^A2= 90 độ (GT)
AC là cạnh chung
Do đó: ∆ABC = ∆AMC (c.g.c)
cho tam giác abc vuông tại a trên tia đối của ab lấy am sao cho ab=am
a/chứng minh tam giác abc = tam giác amc
b/kẻ ah vuông góc vói bc tại h ak vuông góc mc tại k chứng minh bh =mk
c/ chứng minh bm song song vói hk
cho tam giac ABC vuông tại A . Tren tia đối AB lấy AM sao cho AB = AM.a)chứng minh tam giác ABC=tam giác AMC b)kẻ AH tại H và AK vuông góc với MC tại K Chứng minh BH=MK
cho tam giác abc vuông tại a trên tia đối của ab lấy am sao cho ab=am
a/chứng minh tam giác abc = tam giác amc
b/kẻ ah vuông góc vói bc tại h ak vuông góc mc tại k chứng minh bh =mk
c/ chứng minh bm song song vói hk
d/ CMR: ac^2+hb^2=am^2+kc^2
(chỉ làm câu d, có thể sử dụng đáp án của câu a, b, c)
cho △ABC vuông tại A , trên tia đối tia AB lấy điểm m sao cho AB =AM
a, CMR : △ABC =△AMC
b, AH ⊥ BC tại H
AK ⊥ MC tại k
CMR: HK // BM
1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm
a) Chứng tỏ tam giác ABC vuông tại A.
b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.
2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.
3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.
4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a) Chứng minh tam giác AHB = tam giác AHC
b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.
5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I
a) Chứng minh tam giác AIB = tam giác AIC
b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.
c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.
6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.
a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.
b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.
c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.
Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(
Cho tam giác ABC,lấy điểm D thuộc tia đối của tia AB,điểm E thuộc tia đối của tia AC sao cho AD=AB và AE=AC. Kẻ AH vuông góc với BC tại H kẻ AK vuông góc với DE tại K. Chứng minh
a, tam giác ABC =tam giác ADE
b,BH=DK
c,ba điểm A,H,K thẳng hàng
Đề khó quá nhờ mọi người giải với nha
Cho tam giác ABC cân tại A, kẻ AH vuông góc vs BC tại H. Cho AB=5cm, AH=4cm.
a) Chứng minh tam giác ABH = tam giác ACH
b) Tính BC?
c) Trên tia AH lấy điểm K sao cho AH=HK, chứng minh tam giác BAK cân
Mọi ng giúp mik vs, mik sắp thi giữa học kì rồii
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC tại H. Trên tia đối của HA lấy D sao cho HA=HD
a) chứng minh: tam giác AHC=tam giác DHC. Tam giác CAD là tam giác gì?
b) trên DC lấy K sao cho C là trung điểm của DK. Chứng minh AK//BC
c) từ C kẻ đường thẳng song song với AB cắt AK tại M. BM cắt AM tại Q. Chứng minh: AM+CM>2MQ
4)cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy điểm N sao cho BM=CN
a) chứng minh: tam giác ABM = tam giác ACN
b) kẻ BH vuông góc AM; CK vuông góc AN(H thuộc AM;K thuộc AN). chứng minh: AH=AK
c) Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì ? vì sao ?
5)tìm các số x,y,z biết: \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\)và x+y+z=-20