BT

Cho tam giác ABC vuông tại A phân giác của góc B cắt AC tại E Vẽ EH vuông góc với BC gọi K là giao điểm của AB và EH chứng minh a,tam giác ABE=tam giác HBE b: BE là trung trực của AH c: EK = EC d: Tam giác BKC là tam giác cân

PG
30 tháng 8 2021 lúc 9:02

a) Vì EH ⊥ BC ( gt )

⇒ △ BHE vuông tại H

Xét tam giác vuông BAE và tam giác vuông BHE có :

                   BE chung

\(\widehat{B_1}=\widehat{B_2}\) ( BE là tia phân giác của \(\widehat{BAC}\))

⇒ △ BAE =  △ BHE ( cạnh huyền - góc nhọn )

b) Gọi I là giao điểm của AH và BE

Xét △ ABI và △ HBI có :

BA = BH [ △ BAE = △ BHE (cmt) ]

\(\widehat{B_1}=\widehat{B_2}\) ( BE là tia phân giác của \(\widehat{BAC}\) )

BI chung

⇒ Δ ABI = Δ HBI ( c.g.c )

\(\widehat{AIB}=\widehat{AIH}\) ( 2 góc tương ứng )

\(\widehat{AIB}+\widehat{AIH}\) = 1800 ( 2 góc kề bù )

\(\widehat{AIB}=\widehat{AIH}\) = 900

⇒ BI ⊥ AH (1)

Ta có: IA = IH ( Δ ABI = Δ HBI ( cmt )

Mà I nằm giữa hai điểm A và H (2)

⇒ I là trung điểm của AH ( 3)

Từ (1) (2) (3) ⇒ BI là trung trực của AH

Hay BE là trung trực của AH

c) Xét Δ KAE và Δ CHE có:

\(\widehat{KAE}=\widehat{CHE}\) ( = 900 )

AE = HE ( Δ BAE = Δ BHE (cmt)

\(\widehat{AEK}=\widehat{HEC}\) ( 2 góc đối đỉnh )

⇒ Δ KAE = Δ CHE ( g.c.g )

⇒ EK = EC ( 2 cạnh tương ứng )

Bình luận (0)
NT
30 tháng 8 2021 lúc 15:03

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có 

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔABE=ΔHBE

b: Ta có: ΔBAE=ΔBHE

nên BA=BH và EA=EH

hay BE là đường trung trực của AH

Bình luận (0)
NT
31 tháng 8 2021 lúc 1:17

c: Xét ΔEKA vuông tại A và ΔECH vuông tại H có 

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đó: ΔEKA=ΔECH 

Suy ra: EK=EC và AK=HC

d: Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

Xét ΔBKC có BK=BC

nên ΔBKC cân tại B

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
CN
Xem chi tiết
MD
Xem chi tiết
NH
Xem chi tiết
PH
Xem chi tiết
PV
Xem chi tiết
PV
Xem chi tiết
PV
Xem chi tiết
LD
Xem chi tiết