MD

Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD, kẻ DE vuông góc với BC (E thuộc BC). a) Chứng minh rằng: BD là trung trực của AE và AD < DC. b) Tia ED cắt tia BA tại F. Chứng minh: BD vuông góc với CF và AE // CF.c) Tia BD cắt FC tại G. Chứng minh rằng D cách đều ba cạnh của tam giác AEG. d) Lấy M và N tương ứng di động trên BF và BC sao cho BM + BN = BC. Chứng minh rằng trung điểm I của MN luôn nằm trên một đường thẳng cố định.

Chỉ cần làm phần c,d

LL
1 tháng 5 2022 lúc 15:57

lag a ban 

Bình luận (4)
TH
1 tháng 5 2022 lúc 16:52

c) -△ABG và △JBG có: \(AB=BE;\widehat{ABG}=\widehat{JBG};BG\) là cạnh chung.

\(\Rightarrow\)△ABG=△JBG (c-g-c).

\(\Rightarrow\widehat{AGB}=\widehat{JGB}\) nên GB là tia phân giác góc AGE.

AE//CF \(\Rightarrow\widehat{BAE}=\widehat{AFG}\).

-△BFC cân tại B mà BG là đường cao nên BG cũng là trung tuyến.

\(\Rightarrow\)G là trung điểm CF.

-△ACF vuông tại A có: AG là trung tuyến.

\(\Rightarrow AG=FG=\dfrac{1}{2}BC\Rightarrow\)△AFG cân tại G.

\(\Rightarrow\widehat{AFG}=\widehat{FAG}\) mà \(\widehat{BAE}=\widehat{AFG}\Rightarrow\widehat{BAE}=\widehat{FAG}\).

\(\widehat{EAC}=90^0-\widehat{BAE}=90^0-\widehat{FAG}=\widehat{GAC}\).

\(\Rightarrow\)AC là tia phân giác góc EAG.

-△AEG có: 2 đg phân giác AC và GB cắt nhau tại D.

\(\Rightarrow\)D là điểm cách đều 3 cạnh của △AEG (hay còn gọi là giao của 3 đg phân giác, tâm đường tròn nội tiếp tam giác).

Bình luận (1)
TH
1 tháng 5 2022 lúc 16:57

d) -Cho mình xin sử dụng t/c của lớp 8, mình sẽ c/m sau (đường trung bình của tam giác).

\(BM+BN=BC\) mà \(BM+MF=BF=BC\Rightarrow MF=BN\).

-Gọi H là trung điểm BC. Qua M kẻ đường thẳng song song với IH cắt BC tại J.

-△NMJ có: IH//MJ, I là trung điểm MN.

\(\Rightarrow\)H là trung điểm NJ nên \(NH=HJ\).

\(CJ=CH-HJ=BH-NH=BN\)

\(\Rightarrow CJ=MF\Rightarrow BM=BJ\Rightarrow\)△MBJ cân tại B.

\(\Rightarrow\widehat{BMJ}=\dfrac{180^0-\widehat{MBJ}}{2}\) mà \(\widehat{BAE}=\dfrac{180^0-\widehat{MBJ}}{2}\) 

\(\Rightarrow\widehat{BMJ}=\widehat{BAE}\Rightarrow\)MJ//AE.

-Ta dễ dàng thấy rằng điểm A,D,E cố định \(\Rightarrow\)AE, MJ cố định.

\(\Rightarrow\)Trung điểm I của MN luôn nằm trên 1 đg thẳng cố định (đg thẳng MJ).

 

Bình luận (1)

Các câu hỏi tương tự
TM
Xem chi tiết
NC
Xem chi tiết
TV
Xem chi tiết
TL
Xem chi tiết
PN
Xem chi tiết
DT
Xem chi tiết
TB
Xem chi tiết
PB
Xem chi tiết
TY
Xem chi tiết