CC

Cho tam giác ABC vuông tại A, Kẻ đường cao AH. Kẻ HD vuông góc AB, HE vuông góc AC. Chứng minh DE^2 = HB. HC

LL
24 tháng 9 2021 lúc 13:42

Xét tứ giác ADHE có:

\(\widehat{BAC}=\widehat{ADH}=\widehat{AEH}=90^0\)

=> Tư giác ADHE là hình chữ nhật

\(\Rightarrow DE=AH\left(1\right)\)

Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH

\(AH^2=HB.HC\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow DE^2=HB.HC\)

Bình luận (0)
NT
24 tháng 9 2021 lúc 13:51

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE(2)

Từ (1) và (2) suy ra \(DE^2=HB\cdot HC\)

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
NA
Xem chi tiết
HQ
Xem chi tiết
LP
Xem chi tiết
NK
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
TD
Xem chi tiết