NT

Cho tam giác ABC vuông tại A. Kẻ BD là tia phân giác của ABC ( D thuộc AC ) Trên cạnh BC lấy điểm E sao cho BE = BA.

a) Chứng minh: tam giác ABD = EBD

b) Chứng minh: DE = AD và DE vuông góc với BC.

c) Chứng minh: BD là đường trung trực của đoạn AE.

d) Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh ba điểm F, D, E thẳng hàng.

NT
3 tháng 1 2022 lúc 21:08

a: Xét ΔABD và ΔEBD có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

Suy ra: DA=DE

Ta có: ΔABD=ΔEBD

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE⊥BC

c: Ta có: BE=BA

nên B nằm trên đường trung trực của EA(1)

Ta có: DE=DA

nên D nằm trên đường trung trực của EA(2)

Từ (1) và (2) suy ra BD là đường trung trực của EA

Bình luận (0)
DT
3 tháng 1 2022 lúc 21:10

a: Xét ΔABD và ΔEBD có 

BA=BE

ˆABD=ˆEBDABD^=EBD^

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

Suy ra: DA=DE

Ta có: ΔABD=ΔEBD

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
BA
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
NL
Xem chi tiết
NV
Xem chi tiết
HP
Xem chi tiết
MN
Xem chi tiết
ZZ
Xem chi tiết