HN

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC.
Trên tia đối của tia MA lấy điểm D sao cho MA = MD. Chứng minh rằng:

a/ ∆ABM = ∆DCM ;b/ DB DC
 
LL
21 tháng 12 2021 lúc 18:54

a) Xét tam giác ABM và tam giác DCM có:

BM=MC(M là trung điểm BC)

\(\widehat{BMA}=\widehat{CMD}\)(đối đỉnh)

MA=MD(gt)

=> ΔABM=ΔDCM(c.g.c)

b) Ta có: Tam giác ABC vuông tại A có M là trung điểm cạnh huyền BC

=> \(AM=BM=MC=\dfrac{1}{2}BC\)

=> Tam giác ABM cân tại M

\(\Rightarrow\widehat{ABM}=\widehat{BAM}\)

Mà ΔABM=ΔDCM(cmt)

\(\Rightarrow\widehat{ABM}=\widehat{DCM}=\widehat{BAM}=\widehat{CDM}\)

=> Tam giác DMC cân tại M

=> BD=DC

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
H24
Xem chi tiết
0L
Xem chi tiết
HM
Xem chi tiết
TN
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết
7T
Xem chi tiết