a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC, trên tia đối của MA lấy điểm D sao cho M là trung điểm của AD a/ Chứng minh rằng tam giác MAB = tam giác MDC và CD vuông góc AC _b/ Gọi N là trung điểm của AC, chứng minh rằng NB = ND
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh: tam giác MAB = tam giác MDC
b) Chứng minh: AB // CD và tam giác ABC = tam giác CDA
c) Chứng minh: Tam giác BDC vuông tại D
Cho tam giác abc vuông tại a. Gọi m là trung điểm của bc, n là trung điểm của ac. Trên tia đối của tia ma lấy điểm d sao cho ma=md. Gọi E là giao điểm của hai đường thẳng bn và dc. a) chứng minh tam giác amb= tam giác dmc; b) chứng minh ac vuông góc dc; c) Cho biết acb =30, tính aec
Cho tam giác ABC (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a)Chứng minh: tam giác MAB = tam giác MDC
b)Kẻ AH vuông góc với BC tại H, kẻ Dk vuông góc với BC tại K
c)Trên các đoạn thẳng AB và CD lần lượt lấy điểm E và F sao cho AE = DF. Chứng minh: 3 điểm E,M,F thẳng hàng
Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.
Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.
Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC
Cho tam giác ABC, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD. Chứng minh rằng:
a. tam giác MAB = tam giác MDC
b. AB = CD và AB // CD
c. góc BAC = góc CDB
d. Kẻ BH vuông với AD tại H, CK vuông với AD tại K. C/m M là trung điểm của HK
Cho tam giác ABC vuông tại A lấy M là trung điểm của BC. Trên tia đối của tia MA, lấy điểm D sao cho MA=MD.
a) Chứng minh tam giác MAC= tam giác MDB
b) Chứng minh tam giác MAB= tam giác MCD
c) Chứng minh tam giác ABC= tam giác DCB
d) Gọi N là trung điểm của AC. Chứng minh NB= ND
e) NB cắt AD tại K. ND cắt BC tại I. Chứng minh NI= NK
Giải giúp mk với nha!!! Cảm tạ một vạn lần.
Cho tam giác ABC vuông tại A. Lấy M là trung điểm BC. Trên tia đối của tia MA lấy điểm D để MA = MD. a) Chứng minh: ∆MAB = ∆MDC b) Chứng minh AB // CD c) Chứng minh: ∆ABC = ∆CDA và BC = AD d) Lấy E là trung điểm của AC. Kẻ MF ⊥ BD . Chứng minh E, M, F thẳng hàng.
Cho tam giác ABC vuông tại A , đường trung tuyến Am. Biết AB=9cm; BC=15cm
a)Tính AC
b) Trên tia đối của tia MA lấy điểm D sao cho MD=MA . Chứng minh tam giác MAB=MDC
c) Gọi K là trung điểm AC , BK cắt AD tại N . Chứng minh tam giác BDK cân
d) Chứng minh góc MAB> MAC
e) Gọi E là trung điểm AB . Chứng minh ba điểm E ; N ; C thẳng hàng .