Cho tam giác ABC vuông tại A. Gọi D, I lần lượt là trung điểm của các
cạnh BC , AB.
a) Tính độ dài DI, AD. Biết AB = 12cm, AC = 16cm. (1 đ)
b) Gọi K là điểm đối xứng của A qua D. Chứng minh tứ giác ABKC là hình chữ nhật.
c) Gọi E là điểm đối xứng của K qua C. Chứng minh tứ giác ABCE là hình bình hành.
d) Qua B kẻ đường thẳng vuông góc với BC cắt CA tại H, gọi M là điểm đối xứng của
qua
a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)
hay BC=20(cm)
Xét ΔABC có
D là trung điểm của BC
I là trung điểm của AB
Do đó: DI là đường trung bình
=>DI=AC/2=8(cm)
Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=BC/2=10(cm)
b: Xét tứ giác ABKC có
D là trung điểm của BC
D là trung điểm của AK
Do dó: ABKC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABKC là hình chữ nhật
c: Xét tứ giác ABCE có
AB//CE
AB=CE
Do đó: ABCE là hình bình hành