ED cắt AC tại J.
Vì D,E là trung điểm của AH và BH
=> DE là đường trung bình tam giác HAB
=> DE // AB
=> \(ED\perp AB\)
Mà AH là đường cao tam giác ACE
Lại có: CM và AH đi qua D
=> CM là đường cao thứ ba của tam giác ACE
Vậy CD vuông góc AE
ED cắt AC tại J.
Vì D,E là trung điểm của AH và BH
=> DE là đường trung bình tam giác HAB
=> DE // AB
=> \(ED\perp AB\)
Mà AH là đường cao tam giác ACE
Lại có: CM và AH đi qua D
=> CM là đường cao thứ ba của tam giác ACE
Vậy CD vuông góc AE
Cho ∆ABC, AH là đường cao. Qua trung điểm I của BH và trung điểm K của CH dựng các đường thẳng vuông góc với BC, lần lượt cắt AB, AC tại D và E. Chứng minh a) ID // KE và ID = KE b) DE // IK và DE = IK
Bài 1: Cho tam giác ABC vuông cân tại C. Trên AC, CB lấy lần lượt điểm D,E sao cho CD=CE. Từ D,C hạ vuông góc với AE. Các đường vuông góc này cắt AB thứ tự là K,L. C/m: KL=KB.
Bài 2: Cho tứ giác ABCD,M và N lần lượt là trung điểm của AB và CD, biết: AD cắt MN tại E, BC cắt MN tại F. Với điều kiện nào của tứ giác thì ABCD có: góc AEM=FEM
Bài 3: Cho tam giác ABC có 3 góc nhọn, các đường cao CH, BK. Gọi D Và E lần lượt là hình chiếu của B và C trên đường thẳng HK. C/m: DK=EH.
cho tam giac abc vuông tại a đường cao ah gọi d,e lần lượt là trung điểm của ah, bh .cmcd vuong ae
Giúp e với ạ :<<<
Cho Δ ABC vuông tại A, đường cao AH. Gọi I,K lần lượt là trung điểm của AH và BH
a) CI ⊥ AK
b) Gọi Q là trung điểm của HC. Tính chu vi của Δ CIQ nếu HB=9cm; HC= 16cm
Cho tam giác ABC có đường cao AH (H thuộc BC). Gọi E, F lần lượt là trung điểm của AB, AC
a) Chứng minh AH ^ EF.
b) EF cắt AH tại K. Chứng minh KA = KH.
Bài 4: Cho tam giác ABC. Vẽ đường cao AH. Gọi D, E theo thứ tự là trung điểm của các cạnh AB và AC. Vẽ DI và EK cùng vuông góc với BC. Chứng minh rằng :DI = EK. Gợi ý : - Học sinh tự vẽ hình minh họa. - dựa vào đường trung bình chứng minh DI = 1/2 AH và EK = 1/2AH.
Cho tam giác ABC có góc Â>90°. Bên ngoài tam giác ABC vẽ tam giác ABD, ACE vuông cân tại A a) Gọi M,N,k lần lượt là trung điểm BD, CE, BC. Chứng minh tam giác MNK là tam giác vuông cân
Cho tam giác ABC có AH là đường cao. Gọi E và F lần lượt là trung điểm của AB và AC. đoạn thẳng AHI. điểm của a)Biết BC = 6 cm, Tỉnh độ dài EF. b)Đoạn thẳng EF cắt AH tại I. Chứng minh: I là trung điểm AH
Cho tam giác ABC cân tại A, trung tuyến AD. Kẻ DH vuông góc với AC tại
H.Gọi M,I lần lượt là trung điểm của HC,HD.
1.Chứng minh: MI // BC, DM // AH
2.Chứng minh: MI vuông góc với AD.
3.Chứng minh: AI vuông góc với BC.