LN

Cho tam giác ABC vuông tại A ,đường cao AH. D,E lần lượt là trung điểm của AB và AC. a) tứ giác AHDE, DECH là hình gì? vì sao. F đối xứng với H qua E. Tứ giác AHCF là hình gì?vì sao. c) DF cắt AE tại M, DC cắt HE tại N Chứng minh MN vuông góc với DE

NT
7 tháng 12 2023 lúc 22:40

a: Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{1}{2}BC\)

DE//BC

mà H\(\in\)BC

nên DE//CH

Xét tứ giác DECH có DE//CH

nên DECH là hình thang

Ta có: ΔHAB vuông tại H 

mà HD là đường trung tuyến

nên \(HD=DA=DB=\dfrac{AB}{2}\)

Ta có: ΔHAC vuông tại H

mà HE là đường trung tuyến

nên \(HE=AE=EC=\dfrac{AC}{2}\)

Xét ΔEAD và ΔEHD có

EA=EH

DA=DH

ED chung

Do đó: ΔEAD=ΔEHD

=>\(\widehat{EAD}=\widehat{EHD}=90^0\)

Xét tứ giác ADHE có

\(\widehat{DAE}+\widehat{DHE}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp

b: Xét tứ giác AHCF có

E là trung điểm chung của AC và HF

=>AHCF là hình bình hành

Hình bình hành AHCF có \(\widehat{AHC}=90^0\)

nên AHCF là hình chữ nhật

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
PB
Xem chi tiết
BM
Xem chi tiết
MN
Xem chi tiết
LC
Xem chi tiết
NU
Xem chi tiết
RY
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết