TA

Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm và 9cm. Gọi M và N lần lượt là hình chiếu của H trên AB và AC. a) Tính diện tích tứ giác BMNC. b) Tính các giá trị lượng giác của góc ABC

NT
23 tháng 8 2021 lúc 21:12

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}cm\\AC=3\sqrt{13}cm\end{matrix}\right.\)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{3\sqrt{13}}{13}\)

\(\cos\widehat{ABC}=\dfrac{AB}{BC}=\dfrac{2\sqrt{13}}{13}\)

\(\tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{3}{2}\)

\(\cot\widehat{ABC}=\dfrac{AB}{AC}=\dfrac{2}{3}\)

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
MA
Xem chi tiết
DD
Xem chi tiết
PB
Xem chi tiết
TM
Xem chi tiết
PB
Xem chi tiết
DD
Xem chi tiết
PB
Xem chi tiết
NH
Xem chi tiết