H24

Cho tam giác ABC vuông tại A, đường cao AH. Biết BH= 4cm, CH= 9cm. Gọi D,E lần lượt là hình chiếu vuông góc của H trên cạch AB và AC 

a) Tứ giác ADHE là hình gì, tại sao? Tính DE 

b) Các đường thẳng vuông góc DE tại D và E lần lượt cắt BC  tại M và N. C/m MN=1/2BC

c) Tính diện tích tứ giác DEMN

d) C/m AD.AB=AE.AC

NT
30 tháng 8 2021 lúc 15:17

a: Xét tứ giác ADHE có 

\(\widehat{EAD}=\widehat{ADH}=\widehat{AEH}=90^0\)

Do đó: ADHE là hình chữ nhật

Bình luận (0)
NT
13 tháng 10 2022 lúc 8:13

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

=>DE=AH=6cm

b: Gọi O là giao của AH và DE

=>O là trung điểm chung của AH và DE
mà AH=DE

nên OA=OH=OD=OE

Ta có: góc OHD+góc MHD=90 độ

góc ODH+góc MDH=90 độ

mà góc OHD=góc ODH

nên góc MHD=góc MDH

=>ΔMHD cân tại M và góc MDB=góc MBD

=>ΔMBD cân tại M

=>MH=MB

=>M là trung điểm của HB

Cm tương tự, ta được N là trung điểm của HC

=>MN=1/2BC

d: \(AD\cdot AB=AH^2\)

\(AE\cdot AC=AH^2\)

Do đó: \(AD\cdot AB=AE\cdot AC\)

Bình luận (0)