Bài 4: Một số hệ thức về cạnh và góc trong tam giác vuông

BB

Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 15 , AC = 16 TÍNH AH , BH , CH 

NT
2 tháng 9 2021 lúc 12:42

Xét tam giác ABC vuông tại A, đường cao AH

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=\sqrt{481}\)

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{15.16}{\sqrt{481}}=\dfrac{240}{\sqrt{481}}=\dfrac{240\sqrt{481}}{481}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{225}{\sqrt{481}}=\dfrac{225\sqrt{481}}{481}\)cm 

=> \(HC=BC-BH=\sqrt{481}-\dfrac{225\sqrt{481}}{481}\)cm 

Bình luận (0)
NT
2 tháng 9 2021 lúc 13:36

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay \(BC=\sqrt{481}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{225\sqrt{481}}{481}\left(cm\right)\\CH=\dfrac{256\sqrt{481}}{481}\left(cm\right)\\AH=\dfrac{240\sqrt{481}}{481}\left(cm\right)\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
HN
Xem chi tiết
SK
Xem chi tiết
QD
Xem chi tiết
PH
Xem chi tiết
HN
Xem chi tiết
PT
Xem chi tiết
CT
Xem chi tiết
HC
Xem chi tiết