MN

Cho tam giác ABC vuông tại A, đường cao AH   

a) Chứng minh rằng: ∆ABC ∽ ∆HBA 

b) Lấy điểm M thuộc AH. Kẻ đường thẳng B vuông góc với CM tại K. Chứng minh CM.CK=CH.CB

c) Tia BK cắt AH tại D. Chứng minh \(\widehat{BKH}=\widehat{BCD}\) 

NT
13 tháng 6 2023 lúc 10:00

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔCHM vuông tại H và ΔCKB vuông tại K có

góc HCM chung

=>ΔCHM đồng dạng với ΔCKB

=>CH/CK=CM/CB

=>CH*CB=CK*CM

Bình luận (0)
H24
13 tháng 6 2023 lúc 13:50

giải

tự vẽ hình nha 

a, xét △ ABC và △ HBA có 

góc B chung

góc BHA = góc BAC = 90 độ

➜ △ABC ∼ △HBA (g.g)

b, xét △CHM và △CKB có

góc C chung

góc CHM = góc CKB 

➜ △CHM ∼ △CKB (g.g)

c, xét △DHB và △CKB có

góc B chung 

góc BKC = góc BHD =  90 độ 

➜ △DHB∼△CKB (g.g)

vì △DHB∼△CKB 

➜DH/CK = HB/KB = DB/CB

xét △BKH và △BCD có 

góc B chung 

HB/KB = DB/CB (CMT)

➜△BKH ∼ △BCD

vì △BKH ∼ △BCD nên góc BKH = góc BCD (hai góc tương ứng )

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
0H
Xem chi tiết
HT
Xem chi tiết
SL
Xem chi tiết
BT
Xem chi tiết
PN
Xem chi tiết
HT
Xem chi tiết