`a,` Áp dụng định lý pytago ta có :
`BC^2 =AB^2+AC^2`
`BC^2=6^2+8^2`
`BC^2=36+64`
`BC^2=100`
`=>BC=10cm`
ta có : \(S_{ABC}=\dfrac{1}{2}.AB.AC\)
\(S_{ABC}=\dfrac{1}{2}.AH.BC\)
`=>AB.AC=AH.BC`
`=>AH=(AB.AC)/BC = (6,8)/10=4,8`
vậy `BC=10cm, AH=4,8cm`
Áp dụng Pytago với tam giác ABC
\(AB^2+AC^2=BC^2\\ =>BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(AB.AC=AH.BC\\ =>AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
\(\text{Xét }\Delta ABC\text{ vuông tại A có:}\)
\(BC^2=AB^2+AC^2\left(\text{ định lí Pytago}\right)\)
\(\Rightarrow BC^2=6^2+8^2=36+64=100\left(cm\right)\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
\(\text{Xét }\Delta ABC\text{ có:}\)
\(S_{ABC}=\dfrac{1}{2}.AB.AC\)
\(S_{ABC}=\dfrac{1}{2}.AH.BC\)
\(\Rightarrow\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{48}{10}=4,8\left(cm\right)\)