MA

Cho tam giác ABC vuông tại A, AH là đường cao. Gọi E, F lần lượt là chân đường vuông góc hạ từ H xuống AB, AC. M là điểm đối xứng với H qua E. Từ B kẻ BI vuông góc BC (I thuộc AM). Chứng minh rằng: AH, EF và CI đồng quy

TH
20 tháng 4 2023 lúc 18:48

Bạn tự vẽ hình. Gợi ý:

- Chứng minh tứ giác AEHF là hình chữ nhật.

*Gọi K là giao điểm của AH và EF. Khi đó K là trung điểm AH.

- Chứng minh tam giác AHM cân tại A. Suy ra \(\widehat{MAB}=\widehat{HAB}\)

Mặt khác \(\widehat{HAB}=\widehat{ABI}\) (BI//AH) \(\Rightarrow\widehat{MAB}=\widehat{ABI}\)

\(\Rightarrow\)△ABI cân tại I nên AI=BI.

*CA cắt BI tại S. Chứng minh I là trung điểm BS.

Đến đây bài toán đã trở nên đơn giản hơn (chỉ chú ý vào các điểm C,A,H,B,S và K).

- CK cắt BS tại I'. Khi đó ta cũng c/m được I' là trung điểm BS.

\(\Rightarrow I\equiv I'\) nên C,K,I thẳng hàng.

Suy ra đpcm.

 

Bình luận (0)

Các câu hỏi tương tự
LU
Xem chi tiết
PG
Xem chi tiết
H24
Xem chi tiết
KV
Xem chi tiết
NT
Xem chi tiết
NM
Xem chi tiết
TQ
Xem chi tiết
LM
Xem chi tiết
NC
Xem chi tiết