MA

Cho tam giác ABC vuông tại A, điểm D thuộc cạnh BC. Kẻ DM vuông góc với AB (M thuộc AB). Kẻ DN vuông góc với AC (N thuộc AC). Kẻ đường cao AH của tam giác ABC.

a) Chứng minh AD = MN

b) Tính số đo góc MHN;

TP
25 tháng 12 2023 lúc 16:33

a) xét tứ giác AMDN có 
MAN = 90độ (ABC vuông tại A)
DMA = 90độ (DM vuông góc AB,M thuộc AB)
DNA = 90độ (DN vuông góc AC,N thuộc AC)
⇒Tứ giác AMDN là hình chữ nhật (T/c)
⇒AD=MN(T/c hình chữ nhật)(đpcm)

Bình luận (0)
NT
31 tháng 12 2023 lúc 19:24

a: Xét tứ giác AMDN có

\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

=>AMDN là hình chữ nhật

=>AD=MN

b: Gọi O là giao điểm của AD và MN

Vì AMDN là hình chữ nhật

nên AD cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AD và MN

Ta có: AD=MN

\(OA=OD=\dfrac{AD}{2}\)

\(OM=ON=\dfrac{MN}{2}\)

Do đó: OA=OD=OM=ON=AD/2=MN/2

Ta có: ΔHAD vuông tại H

mà HO là đường trung tuyến

nên \(HO=\dfrac{AD}{2}\)

mà AD=MN

nên \(HO=\dfrac{MN}{2}\)

Xét ΔNMH có

HO là đường trung tuyến

\(HO=\dfrac{MN}{2}\)

Do đó: ΔNHM vuông tại H

=>\(\widehat{MHN}=90^0\)

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
DL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
TB
Xem chi tiết
CN
Xem chi tiết