MA

Cho tam giác ABC vuông tại A có M là trung điểm của BC lấy E đối xứng M qua AC và F đối xứng M qua AB a Chứng minh E đối xứng F qua A

NT
22 tháng 11 2023 lúc 22:40

Gọi giao điểm của MF với AB là K, giao điểm của ME với AC là N

E đối xứng M qua AC

=>AC là đường trung trực của ME

=>AC vuông góc với ME tại trung điểm của ME

=>AC vuông góc với ME tại N và N là trung điểm của ME

M đối xứng với F qua AB

=>AB là đường trung trực của MF

=>AB vuông góc với MF tại trung điểm của MF

mà AB cắt MF tại K

nên AB vuông góc MF tại K và K là trung điểm của MF

Xét ΔAME có

AN là đường trung tuyến

AN là đường cao

Do đó: ΔAME cân tại A

Xét ΔAMF có

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAMF cân tại A

ΔAME cân tại A

mà AC là đường cao

nên AC là phân giác của \(\widehat{EAM}\)

=>\(\widehat{EAM}=2\cdot\widehat{MAC}\)

ΔAMF cân tại A

mà AB là đường cao

nên AB là phân giác của \(\widehat{MAF}\)

=>\(\widehat{FAM}=2\cdot\widehat{BAM}\)

AM=AF

AM=AE

Do đó: AF=AE

\(\widehat{EAM}+\widehat{FAM}=\widehat{EAF}\)

=>\(\widehat{EAF}=2\cdot\widehat{BAM}+2\cdot\widehat{CAM}=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)\)

\(=2\cdot90^0=180^0\)

=>E,A,F thẳng hàng

mà AF=AE(cmt)

nên A là trung điểm của EF

=>F đối xứng E qua A

Bình luận (0)

Các câu hỏi tương tự
VN
Xem chi tiết
PB
Xem chi tiết
QN
Xem chi tiết
BM
Xem chi tiết
NN
Xem chi tiết
CI
Xem chi tiết
CI
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết