N2

Cho tam giác ABC vuông tại A có góc B= 50 độ nội tiếp (O,4cm) . Vẽ dây AD vuông AB tại I 
a) C/m ba điểm B , I , C thẳng hàng 
b) Giải tam giác vuông ABC 
c) C/m IB.IC=IA.ID

NT
20 tháng 10 2023 lúc 21:47

a: Sửa đề: vẽ dây AD vuông góc với đường kính của (O) tại I

ΔABC vuông tại A

=>ΔABC nội tiếp đường tròn đường kính BC

=>BC là đường kính của (O)

mà AD vuông góc với đường kính của (O)

nên AD\(\perp\)BC tại I

=>B,I,C thẳng hàng

b: BC=2*OB=8cm

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}=90^0-50^0=40^0\)

Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}\)

=>\(\dfrac{AB}{8}=sin40\)

=>\(AB\simeq5,14\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{8^2-5.14^2}\simeq6,13\left(cm\right)\)

c: ΔOAD cân tại O

mà OI là đường cao

nên I là trung điểm của AD

ΔABC vuông tại A có AI là đường cao

nên \(AI^2=IB\cdot IC\)

=>\(IB\cdot IC=IA\cdot ID\)

Bình luận (0)