GC

Cho tam giác ABC vuông tại A, có đường cao AH
a)Chứng minh tam giác ABC đồng dạng tam giác HBA. Từ đó suy ra AB^2= BH.BC

b) tia phân giác của góc ABC cắt AH, AC lần lượt tại và N, Chứng minh góc BMH=BNA
c) Chứng minh AN^2 = HM.CN giúp em với ạ

NT
15 tháng 3 2022 lúc 20:19

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

DO đó: ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA

hay \(AB^2=HB\cdot BC\)

b: \(\widehat{BMH}+\widehat{HBM}=90^0\)

\(\widehat{BNA}+\widehat{ABN}=90^0\)

mà \(\widehat{ABN}=\widehat{HBM}\)

nên \(\widehat{BMH}=\widehat{BNA}\)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
GC
Xem chi tiết
GC
Xem chi tiết
GM
Xem chi tiết
NT
Xem chi tiết
GC
Xem chi tiết
TN
Xem chi tiết
PV
Xem chi tiết
NA
Xem chi tiết