BL

Cho tam giác ABC vuông tại A, có AH là đường cao, AB = 10cm, AC = 24cm. Tính BH, HC, AH và diện tích tam giác ABC?

H9
16 tháng 9 2023 lúc 18:05

Xét tam giác ABC vuông ta có: 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+10^2}=26\left(cm\right)\)

\(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{10^2}{26}\approx4\left(cm\right)\\HC=\dfrac{AC^2}{BC}=\dfrac{24^2}{26}\approx22\left(cm\right)\end{matrix}\right.\)

Xét tam giác ABH vuông tại H áp dung Py-ta-go ta có: 

\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{10^2-4^2}=2\sqrt{21}\left(cm\right)\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot2\sqrt{21}\cdot26=26\sqrt{21}\left(cm^2\right)\)

Bình luận (0)
NT
16 tháng 9 2023 lúc 18:56

Ta có :

\(BC^2=AB^2+AC^2\left(Pitago\right)\)

\(\Leftrightarrow BC^2=100+576=676\)

\(\Leftrightarrow BC=26\left(cm\right)\)

\(AB^2=BH.BC\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{100}{26}=\dfrac{50}{13}\left(cm\right)\)

\(BC=BH-HC\)

\(\Leftrightarrow HC=BC-BH=26-\dfrac{50}{13}=\dfrac{288}{13}\left(cm\right)\)

\(AH^2=BH.HC=\dfrac{50}{13}.\dfrac{288}{13}=\dfrac{14400}{13^2}\)

\(\Leftrightarrow AH=\dfrac{120}{13}\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.10.24=120\left(cm^2\right)\)

Hoặc : \(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.\dfrac{120}{13}.26=120\left(cm^2\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
PV
Xem chi tiết
LT
Xem chi tiết
BH
Xem chi tiết
NH
Xem chi tiết
XT
Xem chi tiết
L2
Xem chi tiết
PT
Xem chi tiết
NK
Xem chi tiết
CP
Xem chi tiết