a: AK=5cm
b: Xét tứ giác AMKN có
\(\widehat{AMK}=\widehat{ANK}=\widehat{NAM}=90^0\)
Do đó: AMKN là hình chữ nhật
a: AK=5cm
b: Xét tứ giác AMKN có
\(\widehat{AMK}=\widehat{ANK}=\widehat{NAM}=90^0\)
Do đó: AMKN là hình chữ nhật
Cho tam giác ABC có M,N lần lượt là TĐ của AB và AC
a ) Tứ giác BMNC là hình gì ? Vì sao?
b) Gọi I là TĐ MN .Đường thẳng AI cắt Bc tại k .CmR : tứ giác AMKN là hbh
c ) tam giác abc là hình gì thì tứ giác AMKN là hình thoi
D ) với đk trên tam giác abc vẽ KH vuông Ac tại H đường thẳng KH cắt MN tai E . CMR tam giác AME vuông
cho tam giác ABC vuông tại A. gọi M và N lần lượt là trung điểm của BC và AC . P là điểm đối xứng với M qua N
a) tứ giác APMB ; APCM là hình gì ? vì sao
b) cho AB= 6cm , AC = 4m . tính chu vi của tứ giác APCM
c) tam giác vuông ABC có thêm điều kiện gì thì tứ giác APCM là hình vuông
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm đường trung tuyến AM (M thuộc BC).
a, Tính AM.
b, Gọi H,K lần lượt là hình chiếu của M. Chứng minh AHMK là hình chữ nhật.
c, Tam giác vuông ABC thêm điều kiện gì để tứ giác AHMK là hình vuông
cho tam giác ABC cân tại A , có AB = 5cm , BC = 6cm . Gọi M, O lần lượt là trung điểm của BC và AC . Gọi N là điểm đối xứng vs M qua O a. Tính diện tích tam giác ABC b. Tứ giác AMCN là hình gì , vì sao c. Tam giác ABC có thêm đk gì thì tứ giác AMCN là hình vuông
Cho tam giác ABC vuông tại A, gọi E,D,F lần lượt là trung điểm của BC,AB,AC. Gọi M là điểm đối xứng với D qua E.
a) tứ giác ADCM là hình gì? Vì sao?
b) tính chu vi tứ giác ADCM biết BC= 8cm
c) cần thêm điều kiện gì của tam giác ABC thì tứ giác ADCM là hình vuông
Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?
7
b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?
Cho tam giác ABC vuông tại A, đường trung tuyến AM, E là trung điểm của AB, N là điểm đối xứng với M qua E.
a) tứ giác ANMC, ANBM là hình gì? Vì sao?
b) Tính diện tích tam giác NBC biết AB=8cm, AC=6cm
c) Tam giác ABC có thêm diều kiện gì thì ANBM là hình vuông?
Cho tam giác ABC vuông tại A, đường trung tuyến AM, E là trung điểm của AB, N là điểm đối xứng với M qua E.
a) tứ giác ANMC, ANBM là hình gì? Vì sao?
b) Tính diện tích tam giác NBC biết AB=8cm, AC=6cm
c) Tam giác ABC có thêm diều kiện gì thì ANBM là hình vuông?
Cho ΔABC cân tại A có AB = 5cm; BC = 6cm. Kẻ phân giác trong AM (M ∈ BC) . Gọi O là trung điểm của AC và K là điểm đối xứng của M qua O.
a) Tính diện tích tam giác ABC.
b) Tứ giác ABMO là hình gì? Vì sao?
c) Để tứ giác AMCK là hình vuông thì tam giác ABC phải có thêm điều kiện gì?