TP

Cho tam giác ABC vuông tại A có AB=5cm, AC=12 cm. Vẽ đường cao AH. Trên HC lấy D: HD=HB. Vẽ (O) đường kính CD cắt AC tại M

a) Tính AH và góc BAH

b) Tính bán kính (O)

c) So sánh AB và AM

d) c/m  góc ADM = 2 góc DAH

NT
7 tháng 10 2023 lúc 21:09

a: Xét ΔABC vuông tại A có BC^2=AB^2+AC^2

=>BC^2=5^2+12^2=169

=>BC=13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot13=5\cdot12=60\)

=>AH=60/13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(BH=\dfrac{AB^2}{BC}=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\)

Xét ΔAHB vuông tại H có

\(sinBAH=\dfrac{BH}{AB}=\dfrac{25}{13}:5=\dfrac{5}{13}\)

=>\(\widehat{BAH}\simeq22^0\)

b: HB=HD

=>HD=25/13(cm)

BD=25/13*2=50/13(cm)

BD+DC=BC

=>DC=BC-BD=13-50/13=119/13(cm)

=>R=DC/2=119/26(cm)

c: Xét (O) có

ΔCMD nội tiếp

CD là đường kính

Do đó: ΔCMD vuông tại M

Xét ΔABD có

AH vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔABD cân tại A

=>AB=AD

Xét tứ giác AHDM có

\(\widehat{AHD}+\widehat{AMD}=180^0\)

=>AHDM là tứ giác nội tiếp

=>\(\widehat{ADH}=\widehat{AMH}=\widehat{ABD}\)

ΔAMD vuông tại M

=>AM<AD

mà AD=BA

nên AM<AB

d: \(DM\perp AC;AB\perp AC\Leftrightarrow\)DM//AB

=>\(\widehat{MDA}=\widehat{DAB}\)

=>\(\widehat{MDA}=2\cdot\widehat{DAH}\)

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
NB
Xem chi tiết
MA
Xem chi tiết
TT
Xem chi tiết
MC
Xem chi tiết
2T
Xem chi tiết
NK
Xem chi tiết
MP
Xem chi tiết
MP
Xem chi tiết