H24

Cho tam giác ABC vuông tại A có AB=4,5cm, AC=6cm , trung tuyến AM. Đường thẳng vuông góc với AC tại C cắt tia AM tại N . a) Tính độ dài cạnh BC b) Chứng minh AN=2AM c) Phân giác của góc BAC cắt BC tại D . Chứng minh D nằm giữa B và M.

Các bạn chỉ cần làm câu c thôi nhé

NT
5 tháng 1 2024 lúc 21:04

a: Ta có: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=4,5^2+6^2=56,25\)

=>\(BC=\sqrt{56,25}=7,5\left(cm\right)\)

b: CN\(\perp\)CA

AB\(\perp\)CA

Do đó: CN//AB

Xét ΔMCN và ΔMBA có

\(\widehat{MCN}=\widehat{MBA}\)(hai góc so le trong, CN//AB)

CM=BM

\(\widehat{CMN}=\widehat{BMA}\)(hai góc đối đỉnh)

Do đó: ΔMCN=ΔMBA

=>MN=MA

=>M là trung điểm của AN

=>AN=2AM

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{4,5}=\dfrac{CD}{6}\)

mà BD+CD=BC=7,5

nên \(\dfrac{BD}{4,5}=\dfrac{CD}{6}=\dfrac{BD+CD}{4,5+6}=\dfrac{7.5}{10.5}=\dfrac{5}{7}\)

=>\(BD=5\cdot\dfrac{4.5}{7}=\dfrac{22.5}{7}=\dfrac{45}{14}\left(cm\right)\)

Vì ΔABC vuông tại A có AM là đường trung tuyến

nên \(BM=CM=\dfrac{BC}{2}=3,75\left(cm\right)\)

Vì \(BD=\dfrac{45}{14}< \dfrac{52.5}{14}=BM\)

nên D nằm giữa B và M

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
DT
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
QT
Xem chi tiết