AD

cho tam giác ABC vuông tại A có AB < AC.
a, So sánh các góc của tam giác ABC.
b, tia phân giác của góc ABC và tia phân giác của góc ACB cắt nhau tại I. So sánh IB và IC.
c, gọi d là đường thẳng vuông góc với BC tại C. tia BI kéo dài cắt AC ở D và cắt đường thẳng d tại M. chứng minh CDM = CMD

NT
21 tháng 1 2024 lúc 21:02

a:

ΔABC vuông tại A nên BC là cạnh lớn nhất

=>AC<BC

mà AB<AC

nên AB<AC<BC

Xét ΔABC có AB<AC<BC

mà \(\widehat{C};\widehat{B};\widehat{BAC}\) lần lượt là góc đối diện của các cạnh AB,AC,BC

nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)

b: Ta có: \(\widehat{ABI}=\widehat{CBI}=\dfrac{\widehat{ABC}}{2}\)

\(\widehat{ACI}=\widehat{BCI}=\dfrac{\widehat{ACB}}{2}\)

mà \(\widehat{ACB}< \widehat{ACB}\)

nên \(\widehat{ICB}< \widehat{IBC}\)

Xét ΔIBC có \(\widehat{ICB}< \widehat{IBC}\)

mà IB,IC lần lượt là cạnh đối diện của các góc ICB và góc IBC

nên IB<IC

Bình luận (1)

Các câu hỏi tương tự
HC
Xem chi tiết
NH
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
HV
Xem chi tiết
NK
Xem chi tiết
TN
Xem chi tiết
CP
Xem chi tiết
HT
Xem chi tiết