Ôn tập Tam giác

H24

Cho tam giác ABC vuông tại A có AB = AC. Gọi M là trung điểm của cạnh BC, D là trung điểm của cạnh AC

a). Chứng minh rằng: ∆AMB = ∆AMC và AM ⊥ BC

b) Từ A kẻ đường thẳng vuông góc với BD, cắt BC tại E. Trên tia đối của tia DE lấy điểm F sao cho DF = DE. Chứng minh rằng: ∆ADF = ∆CDE, từ đó suy ra: AF // CE

c) Từ C dựng đường thẳng vuông góc với AC, cắt AE tại G. Chứng minh rằng ∆BAD = ∆ACG

d) Chứng minh rằng: AB = 2CG


DH
3 tháng 1 2018 lúc 10:14

â)xét tam giác AMBvà tam giác AMC

AB=AC( gt)

AM chung

MB=MC ( M là trung điểm của BC )

=> tam giác AMB= tam giác AMC ( c.c.c)

=> góc AMB= góc AMC ( 2 góc tương ứng )

mà góc AMB+ góc AMC = 180O ( 2 GÓC KỀ BÙ )

=> góc AMB= góc AMC=90O

=> AM vuông góc với BC

b) xét tam giác ADF và tam giác ADE

DF=DE ( gt)

góc ADF= góc CDE ( 2 góc đối đỉnh )

AD=CD ( D là trung điểm của AC)

=> tam giác ADF = tam giác ADE ( c.g.c)

=> góc CAF= góc ACÊ ( 2 góc tương ứng ) mà chúng ở vị trí so le trong do AC cắt AF và CE

=.> AF// CE

Bình luận (0)
NT
3 tháng 1 2018 lúc 20:55

a Xét \(\Delta AMB\)\(\Delta AMC\) có :

AM : cạnh chung

BA = AC (gt)

BM = MC (gt)

\(\Rightarrow\Delta AMB=\Delta AMC\) (c . c . c)

\(\Rightarrow\widehat{BMA}=\widehat{CMA}\)

\(\widehat{BMA}+\widehat{BMC}\) = 180 độ (hai góc kề bù)

\(\Rightarrow\widehat{BMA}=\widehat{BMC}\) = \(\dfrac{1}{2}\times180\) = 90 độ

\(\Rightarrow AM\perp BC\)

Xét \(\Delta ADF\)\(\Delta CDE\) có :

DF = DE (gt)

AD = DC (gt)

\(\widehat{ADF}=\widehat{CDE}\) (đối đỉnh)

\(\Rightarrow\Delta ADF=\Delta CDE\) (c . g . c)

\(\Rightarrow\widehat{DAF}=\widehat{DCE}\)

\(\Rightarrow\) AF // CE (so le trong)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
0A
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
DV
Xem chi tiết
MN
Xem chi tiết
NT
Xem chi tiết