H24

Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. AK là đường cao, AD là
đường phân giác. Tính BD, KD, AD.

NT
31 tháng 8 2023 lúc 14:47

ΔABC vuông tại A

=>BC^2=AB^2+AC^2

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

mà BD+CD+15

nên \(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{15}{7}\)

=>BD=45/7(cm)

Xét ΔABC có AD là phân giác

nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)

\(=\dfrac{2\cdot9\cdot12}{9+12}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{36\sqrt{2}}{7}\left(cm\right)\)

ΔABC vuông tại A có AK là đường cao

nên AK*BC=AB*AC

=>AK*15=12*9=108

=>AK=7,2cm

ΔAKD vuông tại K

=>AK^2+KD^2=AD^2

=>KD^2=AD^2-AK^2=1296/1225

=>KD=36/35(cm)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LL
Xem chi tiết
LT
Xem chi tiết
MM
Xem chi tiết
MM
Xem chi tiết
PP
Xem chi tiết
NN
Xem chi tiết
NA
Xem chi tiết
NK
Xem chi tiết