NL

Cho tam giác ABC vuông tại A có AB = 6cm, AC =8cm. Kẻ đg cao AH (H thuộc BC ) tia phân giác góc HAC cắt BC tại D. Kẻ  DK vuông góc AC 

a, C/m tam giác AHD = tam giác AKD. => AH = AK

b, C/m tam giác ABD là tam giác cân

b, Tính độ dài BC

 

 

NT
11 tháng 7 2021 lúc 11:40

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)

Suy ra: AH=AK(hai cạnh tương ứng)

b) Ta có: \(\widehat{BDA}+\widehat{DAH}=90^0\)

\(\widehat{BAD}+\widehat{KAD}=90^0\)

mà \(\widehat{DAH}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

nên \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔABD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔABD cân tại B(Định lí đảo của tam giác cân)

c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Bình luận (0)
H24
11 tháng 7 2021 lúc 11:35


 

 

Bình luận (0)