SO

Cho tam giác ABC vuông tại A có AB = 5cm, BC = 10cm.
a) Tính độ dài AC.
b) Vẽ đường phân giác BD của ΔABC và gọi E là hình chiếu của D trên BC. Chứng minh: ΔABD = ΔEBD và AE ⊥ BD.
c) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh: ΔABC = ΔAFC. d) Qua A vẽ đường thẳng song song với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng. làm cho mình câu c với câu d thôi ạ

NT
26 tháng 3 2022 lúc 7:39

a: \(AC=\sqrt{BC^2-AB^2}=5\sqrt{3}\left(cm\right)\)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE và DA=DE

=>BD là đường trung trực của AE

hay BD\(\perp\)AE

 

Bình luận (0)